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Administrivia 
• PS2 will be out tomrrow.  Due Sunday Sept 22nd , 
11:55pm 
 

• There is *no* grace period.  We can either: 
 a) leave submission open and have 50% penalty 
 b) or close it, require email and have 50% penalty 
 
You choose… 
 
• Read; FP chapter 7 
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Stereo: A Special case of Multiple views 

Hartley and Zisserman 

Lowe 

Multi-view geometry, 
matching, invariant 
features, stereo vision 
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Why multiple views? 
• Structure and depth are inherently ambiguous 
from single views. 

Images from Lana Lazebnik 
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Why multiple views? 
• Structure and depth are inherently ambiguous 
from single views. 

Optical center 

P1 
P2 

P1’=P2’ 
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How do we see depth? 
• What cues help us to perceive 3d shape and 
depth? 
 

• What about one eye first? 
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Perspective effects 

S. Seitz 
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Shading 

K. Grauman 
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Texture 

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis] 

http://www.csse.uwa.edu.au/~angie/thesis.pdf
http://www.csse.uwa.edu.au/~angie/thesis.pdf
http://www.csse.uwa.edu.au/~angie/thesis.pdf
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Focus/defocus 

[figs from H. Jin and P. Favaro, 2002] 

Images from 
same point 
of view, 
different 
camera 
parameters 

3d shape / 
depth 
estimates 
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Motion 

Figures from L. Zhang http://www.brainconnection.com/teasers/?main=illusion/motion-shape 
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Estimating scene shape from one eye 

• “Shape from X”: Shading, Texture, Focus, Motion… 
 

• Very popular circa 1980 
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But we (and lots of creatures) have two 
eyes! 

 

• Stereo:  
• shape from “motion” between two views 
• infer 3d shape of scene from two (multiple) images 
from different viewpoints 

scene point 

optical center 

image plane 

Main idea: 
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Stereo photography and stereo viewers 
Take two pictures of the same subject from two slightly 
different viewpoints and display so that each eye sees only one 
of the images. 
 

Invented by Sir Charles Wheatstone 
1838 
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People fascinated by 3D  
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http://www.johnsonshawmuseum.org 
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Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 
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Teesta suspension bridge-Darjeeling, India 
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Mark Twain at Pool Table", no date, UCR Museum of Photography 
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Stereo photography and stereo viewers 

When I grew up… 
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Stereo photography and stereo viewers 

When I grew up… 

You guys.. 
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If you like to cross (wall-eye) your eyes… 
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Single Image Stereo: Autostereogram 

Single image stereogram, by Niklas Een 

S. Seitz 

http://www.cs.chalmers.se/~een/sis/index-en.shtml
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The Basic Idea: Two slightly different 
images 

http://www.well.com/~jimg/stereo/stereo_list.html 
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So how do humans do it? 
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Random dot stereograms 
• Julesz 1960: Do we identify local brightness 
patterns before fusion (monocular process) or 
after (binocular)?  
 

• To test: pair of synthetic images obtained by 
randomly spraying black dots on white objects 
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Random dot stereograms 
 

Forsyth & Ponce 
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Random dot stereograms 
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Random dot stereograms 
• When viewed monocularly, they appear random; 
when viewed stereoscopically, see 3d structure. 
 

• Conclusion: human binocular fusion not based 
upon matching large scale structures or any 
processing of the individual images   
 

• Imaginary “cyclopean retina”  that combines the 
left and right image stimuli as a single unit.  Later 
discovered the cells in the brain’s visual cortex 
that create this “percept” 
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Estimating depth with stereo 
 

• Stereo: shape from “motion” between two views 
• We’ll need to consider: 

• Info on camera pose (“calibration”) 
• Image point correspondences  
 scene point 

optical 
center 

image plane 
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Estimating depth with stereo 
 

• Stereo: shape from “motion” between two views 
• We’ll need to consider: 

•   
•   

scene point 

optical 
center 

image plane 

Info on camera pose (“calibration”) 
Image point correspondences 
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Geometry for a simple stereo system 
• First, assuming parallel 
optical axes, known 
camera parameters 
(i.e., calibrated 
cameras) 

• Figure is looking down 
on the cameras and 
image planes 

• Baseline B,  
focal length f 

• Point P is distance Z in 
camera coordinate 
systems 

B 

f 

P 

Z 

COPL COPR 

Optic  
Axis 

Optic  
Axis 
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Geometry for a simple stereo system 
• Point P projects into 
left and right images. 
 

• Distance is positive in 
left image, and 
negative in right 

B 

f 

xl xr Z 

pl pr 

P 

COPL COPR 
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Geometry for a simple stereo system 
• What is the expression 
for Z? 

• Similar triangles  
(pl, P, pr) and  
(CL,P, Cr): 
 
 

COPL 
B 

f 

xl xr Z 

pl pr 

COPR 

P 

l rB x x
Z Zf

B− +
−

=

l r

BZ f
x x

=
− Disparity 
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Depth from disparity 

image I(x,y) image I´(x´,y´) Disparity map D(x,y) 

(x´,y´)=(x+D(x,y), y) 

So if we could find the corresponding points in two images, we 
could estimate relative depth… 
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General case, with calibrated cameras  
• The two cameras need not have parallel optical axes and 

image planes. 

Vs. 
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• Given p in left image, where can corresponding point 
p’ be? 

Stereo correspondence constraints 
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Stereo correspondence constraints 

• In perspective projection, lines project into lines. So 
the line containing the center of projection and the 
point p in the left image must project to a line in the 
right image.   
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Geometry of two views constrains where the corresponding pixel 
for some image point in the first view must occur in the second 
view. 

• It must be on the line carved out by a plane  connecting 
the world point and optical centers.  

 

Epipolar constraint 
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Epipolar constraint 



Stereo 1: Disparity and Matching CS 4495 Computer Vision – A. Bobick 

Epipolar geometry: terms 
• Baseline: line joining the 

camera centers 
• Epipole: point of intersection 

of baseline with image plane 
• Epipolar plane: plane 

containing baseline and world 
point 

• Epipolar line: intersection of 
epipolar plane with the image 
plane 
 
 
 

 

Why is the epipolar constraint useful? 

• All epipolar lines intersect at the epipole 
• An epipolar plane intersects the left and right image 

planes in epipolar lines 
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This is useful because it reduces the correspondence problem to 
a 1D search along an epipolar line. 

Image from Andrew Zisserman 

Epipolar constraint 



Stereo 1: Disparity and Matching CS 4495 Computer Vision – A. Bobick 

Example 
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What do the epipolar lines look like? 

Ol Or 

Ol Or 

1.  

2.  
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Figure from Hartley & Zisserman 

Example: converging cameras 
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Figure from Hartley & Zisserman 

Where are 
the epipoles? 

Example: parallel cameras 
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For now assume parallel image planes… 
• Assume parallel image planes… 
• Assume same focal lengths… 
• Assume epipolar lines are horizontal… 
• Assume epipolar lines are at the same y location 
in the image… 
 

• That’s a lot of assuming, but it allows us to move 
to the correspondence problem – which you will 
be solving! 
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Correspondence problem 

Multiple match 
hypotheses 
satisfy epipolar 
constraint, but 
which is correct?  

Figure from Gee & Cipolla 1999 
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Correspondence problem 
• Beyond the hard constraint of epipolar geometry, 
there are “soft” constraints to help identify 
corresponding points 
• Similarity 
• Uniqueness 
• Ordering 
• Disparity gradient 
 

• To find matches in the image pair, we will assume 
• Most scene points visible from both views 
• Image regions for the matches are similar in 

appearance 
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Dense correspondence search 

For each epipolar line 
 For each pixel / window in the left image 

• compare with every pixel / window on same epipolar line 
in right image 

• pick position with minimum match cost (e.g., SSD, 
normalized correlation) 

Adapted from Li Zhang 
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Matching cost 

disparity 

Left Right 

scanline 

Correspondence search with similarity constraint 

• Slide a window along the right scanline and 
compare contents of that window with the 
reference window in the left image 

• Matching cost: SSD or normalized correlation 
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Left Right 

scanline 

Correspondence search with similarity constraint 

SSD 



Stereo 1: Disparity and Matching CS 4495 Computer Vision – A. Bobick 

Left Right 

scanline 

Correspondence search with similarity constraint 

Norm. corr 
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Correspondence problem 

Source: Andrew Zisserman 

Intensity 
profiles 
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Correspondence problem 

Neighborhoods of corresponding points are  
similar in intensity patterns. 

Source: Andrew Zisserman 
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Correlation-based window matching 

Source: Andrew Zisserman 
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Textureless regions 

Textureless regions are 
non-distinct; high 
ambiguity for matches. 

Source: Andrew Zisserman 
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Effect of window size 

Source: Andrew Zisserman 
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W = 3 W = 20 

Figures from Li Zhang 

Want window large enough to have sufficient intensity 
variation, yet small enough to contain only pixels with 
about the same disparity. 

Effect of window size 



Stereo 1: Disparity and Matching CS 4495 Computer Vision – A. Bobick 

Correspondence problem 
• Beyond the hard constraint of epipolar geometry, 
there are “soft” constraints to help identify 
corresponding points 
• Similarity 
• Disparity gradient – depth doesn’t change too quickly. 
• Uniqueness 
• Ordering 
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Uniqueness constraint 
• Up to one match in right image for every point in left 

image 

Figure from Gee & 
Cipolla 1999 
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Problem: Occlusion 
• Uniqueness says “up to match” per pixel 
• When is there no match? 
  

Occluded pixels 
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Ordering constraint 

• Points on same surface (opaque object) will be in same 
order in both views 

Figure from Gee & 
Cipolla 1999 
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Ordering constraint 

Figures from Forsyth & Ponce 

• Won’t always hold, e.g. consider transparent object, or 
an occluding surface 
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Stereo results 

Ground truth Scene 

• Data from University of Tsukuba 
• Similar results on other images without ground truth 
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Results with window search 

Window-based matching 
(best window size) 

Ground truth 



Stereo 1: Disparity and Matching CS 4495 Computer Vision – A. Bobick 

Better solutions 
• Beyond individual correspondences to estimate 
disparities: 

• Optimize correspondence assignments jointly 
• Scanline at a time (DP) 
• Full 2D grid (graph cuts) 
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Scanline stereo 
• Try to coherently match pixels on the entire 
scanline 

• Different scanlines are still optimized 
independently 

Left image Right image 

in
te

ns
ity
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“Shortest paths” for scan-line stereo 
Left image 

Right image 

Can be implemented with dynamic programming 
Ohta & Kanade ’85, Cox et al. ’96, Intille & Bobick, ‘01 

leftS

rightS

q 

p 

Le
ft

 
oc

cl
us

io
n 

t  

Right 
occlusion 

s 

I
I ′

Slide credit: Y. Boykov 
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Coherent stereo on 2D grid 
• Scanline stereo generates streaking artifacts 
 
 
 
 
 
 
 
 
 
 

• Can’t use dynamic programming to find 
spatially coherent disparities/ 
correspondences on a 2D grid 
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Stereo as energy minimization 

• What defines a good stereo correspondence? 
1. Match quality 

• Want each pixel to find a good match in the other image 
2. Smoothness 

• If two pixels are adjacent, they should (usually) move 
about the same amount  
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Stereo matching as energy minimization 
I1 I2 D 

• Energy functions of this form can be minimized 
using graph cuts 
Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate 
Energy Minimization via Graph Cuts,  PAMI 2001 

W1(i ) W2(i+D(i )) D(i ) 

)(),,( smooth21data DEDIIEE βα +=

( )∑ −=
ji

jDiDE
,neighbors

smooth )()(ρ( )221data ))(()(∑ +−=
i

iDiWiWE

Source: Steve Seitz 

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
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Better results…  

State of the art method 
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,  

International Conference on Computer Vision, September 1999. 

Ground truth 

For the latest and greatest:  http://www.middlebury.edu/stereo/  

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.middlebury.edu/stereo/
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Challenges 
• Low-contrast ; textureless image regions 
• Occlusions 
• Violations of brightness constancy (e.g., specular 
reflections) 

• Really large baselines (foreshortening and 
appearance change) 

• Camera calibration errors 
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