CS 4495 Computer Vision

N-Views (2) – Essential and Fundamental Matrices

Aaron Bobick School of Interactive Computing

Administrivia

- Today: Second half of N-Views (n = 2)
- PS 3: Will hopefully be out by Thursday
 - Will be due October 6th.
 - Will be based upon last week and today's material
 - We may revisit the logistics suggestions?

Two views...and two lectures

• Projective transforms from image to image

- Some more projective geometry
 - Points and lines and planes
- Two arbitrary views of the same scene
 - Calibrated "Essential Matrix"
 - Two uncalibrated cameras "Fundamental Matrix"
 - Gives epipolar lines

Last time

- Projective Transforms: Matrices that provide transformations including translations, rotations, similarity, affine and finally general (or perspective) projection.
- When 2D matrices are 3x3; for 3D they are 4x4.

Last time: Homographies

 Provide mapping between images (image planes) taken from same center of projection; also mapping between any images of a planar surface.

Last time: Projective geometry

- A line is a *plane* of rays through origin
 - all rays (x,y,z) satisfying: ax + by + cz = 0

in vector notation :
$$0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• A line is also represented as a homogeneous 3-vector I

Projective Geometry: lines and points

2D Lines: ax + by + c = 0 $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$ Eq of line $\mathbf{l}^T \mathbf{x} = 0$

 $l = \begin{bmatrix} a & b & c \end{bmatrix} \Rightarrow \begin{bmatrix} n_x & n_y & d \end{bmatrix}$

Motivating the problem: stereo

 Given two views of a scene (the two cameras not necessarily having optical axes) what is the relationship between the location of a scene point in one image and its location in the other?

Stereo correspondence

- Determine Pixel Correspondence
 - Pairs of points that correspond to same scene point

Epipolar Constraint

• Reduces correspondence problem to 1D search along *conjugate epipolar lines*

Example: converging cameras

Figure from Hartley & Zisserman

Epipolar geometry: terms

- Baseline: line joining the camera centers
- Epipole: point of intersection of baseline with image plane
- Epipolar plane: plane containing baseline and world point
- Epipolar line: intersection of epipolar plane with the image plane
- All epipolar lines intersect at the epipole
- An epipolar plane intersects the left and right image planes in corresponding epipolar lines

From Geometry to Algebra

- So far, we have the explanation in terms of geometry.
- Now, how to express the epipolar constraints algebraically?

Stereo geometry, with calibrated cameras

Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know :

how to **rotate** and **translate** camera reference frame 1 to get to camera reference frame 2.

Rotation: 3 x 3 matrix **R**; translation: 3 vector **T**.

Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know :

how to **rotate** and **translate** camera reference frame 1 to get to camera reference frame 2. $\mathbf{X'}_{c} = \mathbf{R}\mathbf{X}_{c} + \mathbf{T}$

An aside: cross product

$$\vec{a} \times \vec{b} = \vec{c}$$

Vector cross product takes two vectors and returns a third vector that's perpendicular to both inputs.

So here, c is perpendicular to both a and b, which means the dot product = 0.

$$\vec{a} \cdot \vec{c} = 0$$
$$\vec{b} \cdot \vec{c} = 0$$

From geometry to algebra

Another aside: Matrix form of cross product

$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \vec{c}$$

Can be expressed as a matrix multiplication !!!

$$\begin{bmatrix} a_x \end{bmatrix} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$
Notation:
$$\vec{a} \times \vec{b} = \begin{bmatrix} \vec{a}_x \end{bmatrix} \vec{b}$$
Has rank 2!

From geometry to algebra

Essential matrix

E is called the **essential matrix**, and it relates corresponding image points between both cameras, given the rotation and translation.

Note: these points are in each camera coordinate systems.

We know if we observe a point in one image, its position in other image is constrained to lie on line defined by above.

Essential matrix example: parallel cameras

For the parallel cameras, image of any point must lie on same horizontal line in each image plane.

$$\mathbf{R} = \mathbf{p} = [Zx, Zy, \frac{Z}{f}]$$

$$\mathbf{T} = \mathbf{p'} = [Zx', Zy', \frac{Z}{f}]$$

$$\mathbf{F} = [\mathbf{T} \mathbf{x}]\mathbf{R} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & B \\ 0 & -B & 0 \end{pmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} x' & y' & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & B \\ 0 & -B & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} \text{Given a known} \\ \text{point} (x, y) \text{ in the original image, this is a } \\ \text{ime in the} \\ (x', y') \text{ image.} \end{bmatrix} = 0$$

$$By' = By \Rightarrow \mathbf{y'} = \mathbf{y}$$

Weak calibration

- Want to estimate world geometry without requiring calibrated cameras
 - Archival videos (already have the pictures)
 - Photos from multiple unrelated users
 - Dynamic camera system

• Main idea:

 Estimate epipolar geometry from a (redundant) set of point correspondences between two uncalibrated cameras

Two Views Part 2: Essential and Fundamental Matrices

From before: Projection matrix

 This can be rewritten as a matrix product using homogeneous coordinates:

 $-\mathbf{R}_{2}^{\mathrm{T}}\mathbf{T}$

 $-\mathbf{R}_{3}^{T}\mathbf{T}$

Note: Invertible, scale x

and y, assumes no skew

where:

 r_{11} r_{12}
 r_{21} r_{22}
 r_{31} r_{32}
 $\Phi_{ext} = 1$ $\mathbf{K}_{\text{int}} = \begin{bmatrix} -f / s_x & 0 & o_x \\ 0 & -f / s_y & o_y \\ 0 & 0 & 1 \end{bmatrix}$

Two Views Part 2: Essential and Fundamental Matrices

From before: Projection matrix

 This can be rewritten as a matrix product using homogeneous coordinates:

$$\begin{bmatrix} w x_{im} \\ w y_{im} \\ w \end{bmatrix} = \mathbf{K}_{int} \mathbf{\Phi}_{ext} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$
$$\mathbf{p}_{im} = \mathbf{K}_{int} \mathbf{\Phi}_{ext} \mathbf{P}_w$$
$$\mathbf{p}_c$$

$$\mathbf{p}_{im} = \mathbf{K}_{int} \mathbf{p}_c$$

Uncalibrated case

For a given
$$\mathbf{p}_{im} = \mathbf{K}_{int}\mathbf{p}_c$$
 camera:

So, for **two** cameras (left and right):

$$\mathbf{p}_{c,left} = \mathbf{K}_{int,left}^{-1} \mathbf{p}_{im,left}$$
$$\mathbf{p}_{c,right} = \mathbf{K}_{int,right}^{-1} \mathbf{p}_{im,right}$$
Internal calibration matrices, one per camera

Uncalibrated case

$$\mathbf{p}_{c,right} = \mathbf{K}_{int,right}^{-1} \mathbf{p}_{im,right}$$

$$\mathbf{p}_{c,left} = \mathbf{K}_{int,left}^{-1} \mathbf{p}_{im,left}$$

From before, the **essential** matrix **E**.

$$\mathbf{p}_{c,right}^{T}\mathbf{E}\mathbf{p}_{c,left}=\mathbf{0}$$

$$\begin{pmatrix} \mathbf{K}_{int,right}^{-1} \mathbf{p}_{im,right} \end{pmatrix}^{\mathrm{T}} \mathbf{E} \begin{pmatrix} \mathbf{K}_{int,left}^{-1} \mathbf{p}_{im,left} \end{pmatrix} = 0$$

$$\mathbf{p}_{im,right}^{\mathrm{T}} \begin{pmatrix} (\mathbf{K}_{int,right}^{-1})^{T} \mathbf{E} \mathbf{K}_{int,left}^{-1} \end{pmatrix} \mathbf{p}_{im,left} = 0$$
"Fundamental matrix" \mathbf{F}

$$\mathbf{p}_{im,right}^{\mathrm{T}} \mathbf{F} \mathbf{p}_{im,left} = 0 \quad or \quad \mathbf{p}^{T} \mathbf{F} \mathbf{p}' = 0$$

Properties of the Fundamental Matrix

- $\mathbf{l} = \mathbf{F}\mathbf{p}'$ is the epipolar line associated with \mathbf{p}'
- $\mathbf{l}' = \mathbf{F}^T \mathbf{p}$ is the epipolar line associated with \mathbf{p}
- Epipoles found by $\mathbf{F}\mathbf{p}' = \mathbf{0}$ and $\mathbf{F}^{\mathrm{T}}\mathbf{p} = \mathbf{0}$
 - You'll see more one these on the problem set to explain
- F is singular (mapping from 2-D point to 1-D family so rank 2 more later)

Fundamental matrix

- Relates pixel coordinates in the two views
- More general form than essential matrix: we remove need to know intrinsic parameters
- If we estimate fundamental matrix from correspondences in pixel coordinates, can reconstruct epipolar geometry without intrinsic or extrinsic parameters.

Two Views Part 2: Essential and Fundamental Matrices

Different Example: forward motion

courtesy of Andrew Zisserman

CS 4495 Computer Vision – A. Bobick

Two Views Part 2: Essential and Fundamental Matrices

 f_{11}

 f_{12}

 f_{13}

 f_{23}

 f_{31}

 f_{32}

 $egin{array}{c|c} f_{13} \ f_{21} \ f_{22} \ f_{22} \end{array} = \mathbf{0}$

Computing F from correspondences

Each point correspondence generates one constraint on F

$$\mathbf{p}_{im,right}^{\mathrm{T}}\mathbf{F}\mathbf{p}_{im,left}=\mathbf{0}$$

$$\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0$$

Collect n of these $\begin{bmatrix} u'_1u_1 & u'_1v_1 & u'_1 & v'_1u_1 & v'_1v_1 & v'_1 & u_1 & v_1 & 1 \end{bmatrix}$ constraints

Solve for f, vector of parameters.

 F_{11}

 F_{33}

= 0

The (in)famous "eight-point algorithm"

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81	1.00
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79	1.00
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81	1.00
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65	1.00
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15	1.00
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14	1.00
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64	1.00
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48	1.00

- In principal can solve with 8 points.
- Better with more yields homogeneous linear least-squares:
 - Find unit norm vector F yielding smallest residual
 - Remember SVD or substitute a 1?
- What happens when there is noise?

Doing the obvious thing

Rank of F

 Assume we know the homography H_π that maps from Left to Right (Full 3x3)

 $\mathbf{p'} = \mathbf{H}_{\pi} \mathbf{p}$

 Let line I' be the epiloar line corresponding to p – goes through epipole e' • So: $\mathbf{l}' = \mathbf{e}' \times \mathbf{p}'$ $= \mathbf{e}' \times \mathbf{H}_{\pi} \mathbf{p}$ $= [\mathbf{e}']_{\times} \mathbf{H}_{\pi} \mathbf{p}$ $= \mathbf{F} \mathbf{p}$ • Rank of F is rank of $[\mathbf{e}']_{\mathbf{x}} = 2$

Fix the linear solution

- Use SVD or other method to do linear computation for F
- Decompose F using SVD (not the same SVD):

$$\mathbf{F} = UDV^{T}$$

• Set the last singular value to zero:

$$D = \begin{bmatrix} r & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & t \end{bmatrix} \implies \hat{D} = \begin{bmatrix} r & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Estimate new F from the new \hat{D}

$$\hat{\mathbf{F}} = U\hat{D}V^T$$

That's better...

- Stereo image rectification Reproject image planes onto a common plane parallel to the line between optical centers Pixel motion is horizontal after this transformation • Two homographies (3x3 transform), one for each input image reprojection
- C. Loop and Z. Zhang. <u>Computing Rectifying Homographies for Stereo</u> <u>Vision</u>. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Rectification Example

C. Loop and Z. Zhang, <u>Computing Rectifying</u> <u>Homographies for</u> <u>Stereo Vision</u>, IEEE Conf. Computer Vision and Pattern Recognition, 1999.

(b) Image pair transformed by the specialized projective mapping H_p and H'_p. Note that the epipolar lines are now parallel to each other in each image.

(c) Image pair transformed by the similarity H_r and H'_r. Note that the image pair is now rectified (the epipolar lines are horizontally aligned).

(d) Final image rectification after shearing transform H_{*} and H'_{*}. Note that the image pair remains rectified, but the horizontal distortion is reduced.

Two Views Part 2: Essential and Fundamental Matrices

Some example cool applications...

Two Views Part 2: Essential and Fundamental Matrices

Photo synth

Noah Snavely, Steven M. Seitz, Richard Szeliski, "<u>Photo</u> <u>tourism: Exploring photo collections in 3D</u>," SIGGRAPH 2006

http://photosynth.net/

Photosynth.net

Based on <u>Photo Tourism</u> by Noah Snavely, Steve Seitz, and Rick Szeliski

Two Views Part 2: Essential and Fundamental Matrices

3D from multiple images

Building Rome in a Day: Agarwal et al. 2009

Summary

- For 2-views, there is a geometric relationship that define the relations between rays in one view to rays in the other
 - Calibrated Essential matrix
 - Uncalibrated Fundamental matrix.
- This relation can be estimated from point correspondences – both in calibrated cases and uncalibrated.
- Extensions allow combining multiple views to get more geometric information about scenes
 - SLAM (simultaneous localization and mapping) you'll hear about this (I hope!)