CS 4495 Computer Vision

Motion Models

Aaron Bobick
School of Interactive Computing

Fig. 1. Diagram of the hierarchical motion estimation framework.
Outline

• Last time: dense motion: optic flow
 • Brightness constancy constraint equation
 • Lucas-Kanade

• 2D Motion models
 • Bergen, ’92
 • Pyramids
 • Layers

• Motion fields from 3D motions

• Parametric motion
Visual motion

Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others…
Motion estimation: Optical flow

Will start by estimating motion of each pixel separately
Then will consider motion of entire image
Problem definition: optical flow

How to estimate pixel motion from image $I(x, y, t)$ to $I(x, y, t + 1)$?

- Solve pixel correspondence problem
 - given a pixel in $I(x, y, t)$, look for nearby pixels of the same color in $I(x, y, t + 1)$

Key assumptions

- **color constancy**: a point in $I(x, y)$ looks the same in $I(x, y, t+1)$
 - For grayscale images, this is brightness constancy
- **small motion**: points do not move very far

This is called the optical flow problem
Optical flow equation

• Combining these two equations

\[
0 = I(x + u, y + v, t + 1) - I(x, y, t)
\]

\[
\approx I(x, y, t + 1) + I_x u + I_y v - I(x, y, t)
\]

\[
\approx [I(x, y, t + 1) - I(x, y)] + I_x u + I_y v
\]

\[
\approx I_t + I_x u + I_y v
\]

\[
\approx I_t + \nabla I \cdot <u, v>
\]

In the limit as \(u\) and \(v\) go to zero, this becomes exact

\[
0 = I_t + \nabla I \cdot <u, v>
\]

Brightness constancy constraint equation

\[
I_x u + I_y v + I_t = 0
\]
Optical flow equation

\[0 = I_t + \nabla I \cdot <u,v> \quad \text{or} \quad I_x u + I_y v + I_t = 0 \]

- Q: how many unknowns and equations per pixel?

 2 unknowns, one equation

Intuitively, what does this constraint mean?

- The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown
Aperture problem
Solving the aperture problem

- How to get more equations for a pixel?
 - Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel’s neighbors have the same \((u,v)\)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

\[
0 = I_t(p_i) + \nabla I(p_i) \cdot \begin{bmatrix} u \\ v \end{bmatrix}
\]

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
 u \\
 v
\end{bmatrix}
= -
\begin{bmatrix}
 I_t(p_1) \\
 I_t(p_2) \\
 \vdots \\
 I_t(p_{25})
\end{bmatrix}
\]

\[
A_{25 \times 2} \quad d_{2 \times 1} \quad b_{25 \times 1}
\]
Lukas-Kanade flow

- Prob: we have more equations than unknowns

 \[
 A \begin{bmatrix} d \\ 25 \times 2 \\ 2 \times 1 \\ 25 \times 1 \end{bmatrix} = b
 \rightarrow \text{minimize } \|Ad - b\|^2
 \]

Solution: solve least squares problem

- minimum least squares solution given by solution (in d) of:

 \[
 (A^T A) \begin{bmatrix} d \\ 2 \times 2 \\ 2 \times 1 \end{bmatrix} = A^T b
 \]

 \[
 \begin{bmatrix}
 \sum I_x I_x & \sum I_x I_y \\
 \sum I_x I_y & \sum I_y I_y
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 v
 \end{bmatrix}
 = -
 \begin{bmatrix}
 \sum I_x I_t \\
 \sum I_y I_t
 \end{bmatrix}
 \]

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lukas & Kanade (1981)
Eigenvectors of $A^T A$

$$A^T A = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \ I_y] = \sum \nabla I (\nabla I)^T$$

- Recall the Harris corner detector: $M = A^T A$ is the second moment matrix
- The eigenvectors and eigenvalues of M relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
 - The other eigenvector is orthogonal to it
Violating assumptions in Lucas-Kanade

• The motion is large (larger than a pixel)
 • Not-linear: Iterative refinement
 • Local minima: coarse-to-fine estimation

• A point does not move like its neighbors
 • Motion segmentation

• Brightness constancy does not hold
 • Do exhaustive neighborhood search with normalized correlation - tracking features – maybe SIFT – more later….
Violating assumptions in Lucas-Kanade

- The motion is large (larger than a pixel)
 - Not-linear: Iterative refinement
 - Local minima: coarse-to-fine estimation
- A point does not move like its neighbors
 - Motion segmentation
- Brightness constancy does not hold
 - Do exhaustive neighborhood search with normalized correlation - tracking features – maybe SIFT – more later….
Not tangent: Iterative Refinement

Iterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp I_t towards I_{t+1} using the estimated flow field
 • use image warping techniques
3. Repeat until convergence
Optical Flow: Iterative Estimation

Initial guess: \(d_0 = 0 \)

Estimate: \(d_1 = d_0 + \hat{d} \)

(using \(d \) for displacement here instead of \(u \))
Optical Flow: Iterative Estimation

Initial guess: d_1

Estimate: $d_2 = d_1 + \hat{d}$
Optical Flow: Iterative Estimation

Initial guess: d_2

Estimate: $d_3 = d_2 + \hat{d}$
Optical Flow: Iterative Estimation

\[f_1(x - d_3) \approx f_2(x) \]

\(x_0 \)
Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it’s much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?
Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity. I.e., how do we know which ‘correspondence’ is correct?

To overcome aliasing: coarse-to-fine estimation.
Reduce the resolution!
Coarse-to-fine optical flow estimation

Gaussian pyramid of image 1

Gaussian pyramid of image 2

$u=10\text{ pixels}$

$u=5\text{ pixels}$

$u=2.5\text{ pixels}$

$u=1.25\text{ pixels}$
Coarse-to-fine optical flow estimation

Gaussian pyramid of image 1

image 1

run iterative L-K

Upsample flow

warp

run iterative L-K

image 2

warp & upsample

Gaussian pyramid of image 2
Multi-scale
Remember: Image sub-sampling

Throw away every other row and column to create a 1/2 size image - called image sub-sampling
Bad image sub-sampling

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Aliasing! What do we do?
Gaussian (lowpass) pre-filtering

Solution: filter the image, *then* subsample
Subsampling with Gaussian pre-filtering

Gaussian 1/2

G 1/4

G 1/8
Band-pass filtering

Gaussian Pyramid (low-pass images)

Laplacian Pyramid (subband images)

These are “bandpass” images (almost).
Laplacian Pyramid

- How can we reconstruct (collapse) this pyramid into the original image?
Image Pyramids

Idea: Represent NxN image as a “pyramid” of 1x1, 2x2, 4x4, ..., 2^k x 2^k images (assuming N=2^k)

Known as a **Gaussian Pyramid** [Burt and Adelson, 1983]
Computing the Laplacian Pyramid

Reduce

Expand

Need G_k to reconstruct
Reduce and Expand

Reduce

Apply “5-tap” *separable* filter to make reduced image.
Reduce and Expand

Reduce
Apply “5-tap” separable filter to make reduced image.

Expand
Apply different “3-tap” separable filters for even and odd pixels to make expanded image...
Just Expand

Apply different “3-tap” separable filters for even and odd pixels to make expanded image.
What can you do with band limited imaged?
Apples and Oranges in bandpass

L_0

(a) (b) (c)

L_2

(d) (e) (f)

L_4

(g) (h) (i)

Reconstructed

(j) (k) (l)
Applying pyramids to LK
Coarse-to-fine global motion estimation

Final \langle u(x,y), v(x,y) \rangle
Multi-resolution Lucas Kanade Algorithm

Compute Iterative LK at highest level

Initialize \(u_{K+1}, v_{K+1} = 0 \) at size of level \(K+1 \)

For Each Level \(i \) from \(K \) to 0

- Upsample \(u_{i+1}, v_{i+1} \) to create \(u_i^p, v_i^p \) flow fields of now twice resolution as level \(i+1 \).
- Multiply \(u_i^p, v_i^p \) by 2 to get predicted flow
- Warp \(I_2 \) according to predicted flow
- Compute \(I_t \) –temporal derivative
- Apply LK to get \(u_i^\delta, v_i^\delta \) (the correction in flow)
- Add corrections to obtain the flow \(u(i), v(i) \) at \(i^{th} \) level, i.e.,
 \[
 u_i = u_i^p + u_i^\delta; \quad v_i = v_i^p + v_i^\delta
 \]
Optical Flow Results

Lucas-Kanade without pyramids

Fails in areas of large motion

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Optical Flow Results

Lucas-Kanade with Pyramids

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Moving to models

• Previous method(s) give dense flow with little or no constraint between locations (smoothness is either explicit or implicit).

• Suppose you “know” that motion is constrained, e.g.
 • Small rotation about horizontal or vertical axis (or both) that is very close to a translation.
 • Distant independent moving objects

• In this case you might “model” the flow…

 Ready for another old slide?
Motion models

- Translation: 2 unknowns
- Similarity: 4 unknowns
- Affine: 6 unknowns
- Perspective: 8 unknowns

Diagram showing the relationships between motion models: translation, similarity, affine, and projective.
Focus of Expansion (FOE) - Example

Fig. 7.3 FOE for rectilinear observer motion. (a) An image. (b) Later image. (c) Flow shows different FOEs for static floor and moving object.
Full motion model

- From physics or elsewhere:

\[
V = \Omega \times R + T
\]

\[
\begin{bmatrix}
V_x \\
V_y \\
V_z
\end{bmatrix} \approx \begin{bmatrix}
0 & -\omega_z & \omega_y \\
\omega_z & 0 & -\omega_x \\
-\omega_y & \omega_x & 0
\end{bmatrix} \begin{bmatrix}X \\ Y \\ Z\end{bmatrix} + \begin{bmatrix}V_{Tx} \\ V_{Ty} \\ V_{Tz}\end{bmatrix}
\]

\[
[a_x] = \begin{bmatrix}0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0\end{bmatrix}
\]

\[
\begin{bmatrix}V_x \\ V_y \\ V_z\end{bmatrix} = \text{Velocity Vector}
\]

\[
\begin{bmatrix}V_{Tx} \\ V_{Ty} \\ V_{Tz}\end{bmatrix} = \text{Translational Component of Velocity}
\]

\[
\begin{bmatrix}\omega_x \\ \omega_y \\ \omega_z\end{bmatrix} = \text{Angular Velocity}
\]
General motion

\[x = f \frac{X}{Z} \]
\[y = f \frac{Y}{Z} \]

Take derivatives:

\[u = v_x = f \frac{ZV_x - XV_z}{Z^2} = f \left(\frac{V_x}{Z}\right) \frac{V_z}{Z} = f \frac{V_x}{Z} - x \frac{V_z}{Z} \]
\[v = v_y = f \frac{ZV_y - YV_z}{Z^2} = f \left(\frac{V_y}{Z}\right) \frac{V_z}{Z} = f \frac{V_y}{Z} - y \frac{V_z}{Z} \]

\[
\begin{bmatrix}
 u(x, y) \\
 v(x, y)
\end{bmatrix}
= \frac{1}{Z(x, y)} A(x, y) T + B(x, y) \Omega
\]

Where \(T \) is translation vector, \(\Omega \) is rotation
If a plane and perspective...

\[aX + bY + cZ + d = 0 \]

\[u(x, y) = a_1 + a_2 x + a_3 y + a_7 x^2 + a_8 xy \]

\[v(x, y) = a_4 + a_5 x + a_6 y + a_7 xy + a_8 y^2 \]
If a plane and orthographic…

\[
u(x, y) = a_1 + a_2 x + a_3 y
\]

\[
\nu(x, y) = a_4 + a_5 x + a_6 y
\]

Affine!
Affine motion

\[u(x, y) = a_1 + a_2 x + a_3 y \]
\[v(x, y) = a_4 + a_5 x + a_6 y \]

- Substituting into the brightness constancy equation:

\[I_x \cdot u + I_y \cdot v + I_t \approx 0 \]

\[I_x \left(a_1 + a_2 x + a_3 y \right) + I_y \left(a_4 + a_5 x + a_6 y \right) + I_t \approx 0 \]

- Each pixel provides 1 linear constraint in 6 unknowns
- Least squares minimization:

\[Err(\tilde{a}) = \sum \left[I_x \left(a_1 + a_2 x + a_3 y \right) + I_y \left(a_4 + a_5 x + a_6 y \right) + I_t \right]^2 \]
Affine motion

• Can sum gradients over window or entire image:

\[
Err(\vec{a}) = \sum \left[I_x (a_1 + a_2 x + a_3 y) + I_y (a_4 + a_5 x + a_6 y) + I_t \right]^2
\]

• Minimize squared error (robustly)

\[
\begin{bmatrix}
I_x & I_{x1} & I_{x1}y & I_y & I_{y1} & I_{y1}y \\
I_x & I_{x2} & I_{x2}y & I_y & I_{y2} & I_{y2}y \\
& \cdots & \cdots & \cdots & \cdots & \cdots \\
I_x & I_{xn} & I_{xn}y & I_y & I_{yn} & I_{yn}y \\
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5 \\
a_6 \\
\end{bmatrix}
= -
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_n \\
\end{bmatrix}
\]

• This is an example of parametric flow – can substitute any linear model easily. Others with some work.
Hierarchical model-based flow

Fig. 1. Diagram of the hierarchical motion estimation framework.

Now, if different motion regions...
Layered motion

- Basic idea: break image sequence into “layers” each of which has a coherent motion

What are layers?

- Each layer is defined by an alpha mask and an affine motion model.
Motion segmentation with an affine model

\[u(x, y) = a_1 + a_2 x + a_3 y \]
\[v(x, y) = a_4 + a_5 x + a_6 y \]

Local flow estimates

Motion segmentation with an affine model

\[u(x, y) = a_1 + a_2 x + a_3 y \]

\[v(x, y) = a_4 + a_5 x + a_6 y \]

Equation of a plane
(parameters \(a_1, a_2, a_3 \) can be found by least squares)

Motion segmentation with an affine model

Equation of a plane
(parameters a_1, a_2, a_3 can be found by least squares)

$u(x, y) = a_1 + a_2 x + a_3 y$

$\nu(x, y) = a_4 + a_5 x + a_6 y$

1D example

True flow

Local flow estimate

Segmented estimate

Line fitting

“Foreground”

“Background”

Occlusion

How do we estimate the layers?

- Compute local flow in a coarse-to-fine fashion
- Obtain a set of initial affine motion hypotheses
 - Divide the image into blocks and estimate affine motion parameters in each block by least squares
 - Eliminate hypotheses with high residual error
 - Perform k-means clustering on affine motion parameters
 - Merge clusters that are close and retain the largest clusters to obtain a smaller set of hypotheses to describe all the motions in the scene
- Iterate until convergence:
 - Assign each pixel to best hypothesis
 - Pixels with high residual error remain unassigned
 - Perform region filtering to enforce spatial constraints
 - Re-estimate affine motions in each region

J. Wang and E. Adelson. Layered Representation for Motion Analysis. _CVPR 1993_.

Example result

Recovering image motion

• Feature-based methods (e.g. SIFT, Ransac, regression)
 • Extract visual features (corners, textured areas) and track them -
 sometimes over multiple frames
 • Sparse motion fields, but possibly robust tracking
 • Good for global motion
 • Suitable especially when image motion is large (10-s of pixels)
 • PS4!

• Direct-methods (e.g. optical flow)
 • Directly recover image motion from spatio-temporal image
 brightness variations
 • Dense, local motion fields, but more sensitive to appearance
 variations
 • Suitable for video and when image motion is small (< 10 pixels)
 • PS5!!!