
Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Aaron Bobick
School of Interactive Computing

CS 4495 Computer Vision

Linear Filtering 1:
Filters, Convolution, Smoothing

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Administrivia – Fall 2014
August 26:

There are a lot of you!
4495A – about 62 undergrads
4495GR – 40 grad students – mostly MS(CS)
7495 – 40 mostly PhD students

• Still working on the CS7495 model. We will not meet tonight –
I’ll be working on your web site instead. Still need a room.

• 4495: PS0 can now be handed in.

• 4495: PS1 will be out Thursday – due next Sunday
(Sept 7) 11:55pm.

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Linear outline (hah!)

• Images are really functions where the vector can
be any dimension but typical are 1, 3, and 4. (When 4?)
Or thought of as a multi-dimensional signal as a function
of spatial location.

• Image processing is (mostly) computing new functions of
image functions. Many involve linear operators.

• Very useful linear operator is convolution /correlation -
what most people call filtering – because the new value is
determined by local values.

• With convolution can do things like noise reduction,
smoothing, and edge finding (last one is next time).

(,)I x y

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Images as functions

Source: S. Seitz

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Images as functions

Source: S. Seitz

(,)
(,) (,)

(,)

r x y
f x y g x y

b x y

 =

• We can think of an image as a function, f or I,
from R2 to R:

f(x, y) gives the intensity or value at position (x, y)
Realistically, we expect the image only to be defined
over a rectangle, with a finite range:
f: [a,b] x [c,d] [0, 1.0] (why sometimes 255???)

• A color image is just three functions “pasted”
together. We can write this as a “vector-valued”
function:

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

The real Arnold
arnold(40:60,30:40)

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Digital images
• In computer vision we typically operate on digital

(discrete) images:
• Sample the 2D space on a regular grid
• Quantize each sample (round to “nearest integer”)

• Image thus represented as a matrix of integer values.

2D

1D

Adapted from S. Seitz

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Matlab – images are matrices

>> im = imread('peppers.png'); % semicolon or many numbers

>> imgreen = im(:,:,2);

>> imshow(imgreen)

>> line([1 512], [256 256],'color','r')

>> plot(imgreen(256,:));

100 200 300 400 500

100

200

300

400

500

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Noise in images
• Noise as an example of images really being functions

• Noise is just another function that is combined with the
original function to get a new – guess what – function

• In images noise looks, well, noisy.

'(,) (,) (,)I x y I x y x yη= +

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Common types of noise
• Salt and pepper noise:

random occurrences of
black and white pixels

• Impulse noise: random
occurrences of white
pixels

• Gaussian noise:
variations in intensity
drawn from a Gaussian
normal distribution

Source: S. Seitz

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Gaussian noise

Fig: M. Hebert

>> noise = randn(size(im)).*sigma;

>> output = im + noise;

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Image shows
the noise
values
themselves.

Sigma = 2 Sigma = 8

Sigma = 32 Sigma = 64

noise = randn(size(im)).*sigma;

Effect of σ on Gaussian noise

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

BE VERY CAREFUL!!!
• In previous slides, I did not say (at least wasn’t supposed to

say) what the range of the image was. A 𝜎𝜎 of 1.0 would be tiny
if the range is [0 255] but huge if [0.0 1.0].

• Matlab can do either and you need to be very careful. If in
doubt convert to double.

• Even more difficult can be displaying the image. Things like:
• imshow(I,[LOW HIGH])

display the image from [low high]

Don’t worry – you’ll get used to these hassles… see problem set
PS0.

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Back to our program…

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Suppose want to remove the noise…

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

First attempt at a solution
• Suggestions?
• Let’s replace each pixel with an average of all the values

in its neighborhood
• Assumptions:

• Expect pixels to be like their neighbors
• Expect noise processes to be independent from pixel to pixel

K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

First attempt at a solution
• Let’s replace each pixel with an average of all the values

in its neighborhood
• Moving average in 1D:

Source: S. Marschner

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Weighted Moving Average
• Can add weights to our moving average
• Weights [1, 1, 1, 1, 1] / 5

Source: S. Marschner

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Weighted Moving Average
• Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Reference
point

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Moving Average In 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Moving Average In 2D

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Correlation filtering
Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in
neighborhood around image
pixel F[i,j]

Attribute uniform
weight to each
pixel

Now generalize to allow different weights depending on
neighboring pixel’s relative position:

Non-uniform weights

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Correlation filtering

Filtering an image: replace each pixel with a linear
combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the
weights in the linear combination.

This is called cross-correlation, denoted

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Averaging filter
• What values belong in the kernel H for the moving

average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111
111
111

“box filter”

?

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Smoothing by averaging
depicts box filter:
white = high value, black = low value

original filtered

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Squares aren’t smooth…

• Smoothing with an average
actually doesn’t compare at all
well with a defocussed lens

• Most obvious difference is that a
single point of light viewed in a
defocussed lens looks like a
fuzzy blob; but the averaging
process would give a little
square.

• More about “impulse” responses
later…

D. Forsyth

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Gaussian filter
• What if we want nearest neighboring pixels to have the

most influence on the output?
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

This kernel is an
approximation of a
Gaussian function:

Source: S. Seitz

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

The picture shows a
smoothing kernel
proportional to

(which is a reasonable
model of a circularly
symmetric fuzzy blob)

An Isotropic Gaussian

D. Forsyth

2 2

2e ()
2

x ()p x x
σ
+

−

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Smoothing with a Gaussian

D. Forsyth

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Smoothing with not a Gaussian

D. Forsyth

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Gaussian filters
• What parameters matter here?
• Size of kernel or mask

• Note, Gaussian function has infinite support, but discrete
filters use finite kernels

σ = 5 with
10 x 10
kernel

σ = 5 with
30 x 30
kernel

K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Gaussian filters
• What parameters matter here?
• Variance of Gaussian: determines extent of
smoothing

σ = 2 with
30 x 30
kernel

σ = 5 with
30 x 30
kernel

K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’, hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h);
>> imshow(outim);

outim
K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Smoothing with a Gaussian

for sigma=1:3:10
h = fspecial('gaussian‘, fsize, sigma);
out = imfilter(im, h);
imshow(out);
pause;

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

More Gaussian noise (like earlier) σ W
ider G

aussian sm
oothing kernel σ

Keeping the two Gaussians straight…

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

And now some linear intuition…
An operator 𝐻𝐻 (or system) is linear if two properties hold
(𝑓𝑓𝑓 and 𝑓𝑓𝑓 are some functions, 𝑎𝑎 is a constant):

• Additivity (things sum) (superposition):
𝐻𝐻(𝑓𝑓𝑓 + 𝑓𝑓𝑓) = 𝐻𝐻(𝑓𝑓𝑓) + 𝐻𝐻(𝑓𝑓𝑓) (looks like distributive law)

• Multiplicative scaling (Homogeneity of degree 1)
𝐻𝐻(𝑎𝑎 � 𝑓𝑓𝑓) = 𝑎𝑎 � 𝐻𝐻(𝑓𝑓𝑓)

Because it is sums and multiplies, the
“filtering” operation we were doing are linear.

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

An impulse function…
• In the discrete world, and impulse is a very easy signal to

understand: it’s just a value of 1 at a single location.

• In the continuous world, an impulse is an idealized
function that is very narrow and very tall so that it has a
unit area. In the limit:

1.0

Area = 1.0

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

An impulse response
• If I have an unknown system and I “put in” an impulse, the

response is called the impulse response. (Duh?)

• So if the black box is linear you can describe 𝐻𝐻 by ℎ 𝑥𝑥 .
Why?

“Black Box”

H
(or ℎ(𝑡𝑡))

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

What is the result of filtering the impulse signal
(image) F with the arbitrary kernel H?

?

K. Grauman

=

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0=

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0=

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f=

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f=

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f e=

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f e d=

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f e d=

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f e d

c
=

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f e d

c
=

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

“Filtering” an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

i h g

f e d

c b a

If you just “filter” meaning slide the kernel over the
image you get a reversed response.

=

Center coordinate is 0,0!

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Convolution

• Convolution:
• Flip where the filter is applied in both dimensions (bottom to top,

right to left)
• Then apply cross-correlation

Notation for
convolution
operator

H*

F

K. Grauman

H**G H F=

[,] [,] [,]
k k

u k v k
H u v F iG i u j vj

=− =−
− −∑ ∑=

Centered at zero!

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

One more thing…
• Shift invariant:

• Operator behaves the same everywhere, i.e. the value
of the output depends on the pattern in the image
neighborhood, not the position of the neighborhood.

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Properties of convolution
• Linear & shift invariant

• Commutative:

f * g = g * f

• Associative

(f * g) * h = f * (g * h)

• Identity:

unit impulse e = […, 0, 0, 1, 0, 0, …]. f * e = f

• Differentiation:

We’ll use
this later!

g) = (*ff g
x x
∂ ∂

∂
∗

∂

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Convolution vs. correlation
Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Computational Complexity
• If an image is NxN and a kernel (filter) is WxW, how many

multiplies do you need to compute a convolution?

• You need N*N*W*W = N2W2

• which can get big (ish)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

i h g

f e d

c b a
=

N x N

W x W

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Separability

• Now we’re going to take advantage of the associative
property of convolution.

• In some cases, filter is separable, meaning you can get the
square kernel H by convolving a single column vector by
some row vector:

c

r

H

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Separability

• So we do two convolutions but each is W*N*N. So this is
useful if W is big enough such that 𝑓𝑊𝑊𝑁𝑁2 ≪ 𝑊𝑊2𝑁𝑁2

• Used to be very important. Still, if W=31, save a factor of
15.

* (*) * * (*)G H F C R F C R F= = =

c

r

H

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Boundary issues
• What is the size of the output?
• Old MATLAB: filter2(g, f, shape)

• shape = ‘full’: output size is sum of sizes of f and g
• shape = ‘same’: output size is same as f
• shape = ‘valid’: output size is difference of sizes of f and g

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)

Source: S. Marschner

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)
• wrap around

Source: S. Marschner

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)
• wrap around
• copy edge

Source: S. Marschner

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge

Source: S. Marschner

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods (new MATLAB):

• clip filter (black): imfilter(f, g, 0)
• wrap around: imfilter(f, g, ‘circular’)
• copy edge: imfilter(f, g, ‘replicate’)
• reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Predict the filtered outputs

000
010
000

* = ?
000
100
000

* = ?

111
111
111

000
020
000 -* = ?

K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Practice with linear filters

000
010
000

Original

?

Source: D. Lowe

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Practice with linear filters

000
010
000

Original Filtered
(no change)

Source: D. Lowe

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Practice with linear filters

000
100
000

Original

?

Source: D. Lowe

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Practice with linear filters

000
100
000

Original Shifted left
by 1 pixel
with
correlation

Source: D. Lowe

Center coordinate is 0,0!

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Practice with linear filters

Original

?
111
111
111

Source: D. Lowe

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Practice with linear filters

Original

111
111
111

Blur (with a
box filter)

Source: D. Lowe

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Practice with linear filters

Original

111
111
111

000
020
000 - ?

Source: D. Lowe

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Practice with linear filters

Original

111
111
111

000
020
000 -

Sharpening filter
- Accentuates differences
with local average

Source: D. Lowe

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Filtering examples: sharpening

K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Effect of smoothing filters

Additive Gaussian noise Salt and pepper noise

K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Median filter

• No new pixel values
introduced

• Removes spikes: good
for impulse, salt &
pepper noise

• Linear?

K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Median filter

Salt and
pepper
noise

Median
filtered

Source: M. Hebert

Plots of a row of the
image

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Median filter
• Median filter is edge preserving

K. Grauman

Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

To do:

• Problem set 0 available; due 11:59pm Thurs Aug 29th

• Problem set 1 – Filtering, Edges, Hough – will be handed
out Aug 28th (Thurs) and is due Sun Sept 7, 11:59pm.

	CS 4495 Computer Vision��Linear Filtering 1:�	Filters, Convolution, Smoothing
	Administrivia – Fall 2014	
	Linear outline (hah!)
	Images as functions
	Images as functions
	The real Arnold
	Digital images
	Matlab – images are matrices
	Noise in images
	Common types of noise
	Gaussian noise
	Effect of σ on Gaussian noise
	BE VERY CAREFUL!!!
	Back to our program…
	Suppose want to remove the noise…
	First attempt at a solution
	First attempt at a solution
	Weighted Moving Average
	Weighted Moving Average
	Moving Average In 2D
	Moving Average In 2D
	Moving Average In 2D
	Moving Average In 2D
	Moving Average In 2D
	Moving Average In 2D
	Moving Average In 2D
	Correlation filtering
	Correlation filtering
	Averaging filter
	Smoothing by averaging
	Squares aren’t smooth…
	Gaussian filter
	An Isotropic Gaussian
	Smoothing with a Gaussian
	Smoothing with not a Gaussian
	Gaussian filters
	Gaussian filters
	Matlab
	Smoothing with a Gaussian
	Keeping the two Gaussians straight…
	And now some linear intuition…
	An impulse function…
	An impulse response
	Filtering an impulse signal
	Filtering an impulse signal
	Filtering an impulse signal
	Filtering an impulse signal
	Filtering an impulse signal
	Filtering an impulse signal
	Filtering an impulse signal
	Filtering an impulse signal
	Filtering an impulse signal
	Filtering an impulse signal
	“Filtering” an impulse signal
	Convolution
	One more thing…
	Properties of convolution
	Convolution vs. correlation
	Computational Complexity
	Separability
	Separability
	Boundary issues
	Boundary issues
	Boundary issues
	Boundary issues
	Boundary issues
	Boundary issues
	Predict the filtered outputs
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Filtering examples: sharpening
	Effect of smoothing filters
	Median filter
	Median filter
	Median filter
	To do:

