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Administrivia – Fall 2014
August 26:  

There are a lot of you!  
4495A – about 62 undergrads
4495GR – 40 grad students – mostly MS(CS)
7495 – 40 mostly PhD students

• Still working on the CS7495 model.  We will not meet tonight –
I’ll be working on your web site instead.   Still need a room. 

• 4495: PS0 can now be handed in. 

• 4495:  PS1 will be out Thursday – due next Sunday 
(Sept 7) 11:55pm. 
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Linear outline (hah!)

• Images are really functions where the vector can 
be any dimension but typical are 1, 3, and 4. (When 4?)  
Or thought of as a multi-dimensional signal as a function 
of spatial location.

• Image processing is (mostly) computing new functions of 
image functions.  Many involve linear operators.

• Very useful linear operator is convolution /correlation  -
what most people call filtering – because the new value is 
determined by local values.

• With convolution can do things like noise reduction, 
smoothing, and edge finding (last one is next time). 

( , )I x y
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Images as functions

Source: S. Seitz
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Images as functions

Source: S. Seitz
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• We can think of an image as a function, f or I, 
from R2 to R:

f( x, y ) gives the intensity or value at position ( x, y )
Realistically, we expect the image only to be defined 
over a rectangle, with a finite range:
f: [a,b] x [c,d]  [0, 1.0]  (why sometimes 255???)

• A color image is just three functions “pasted” 
together.  We can write this as a “vector-valued” 
function: 
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The real Arnold
arnold(40:60,30:40)   



Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Digital images
• In computer vision we typically operate on digital 

(discrete) images:
• Sample the 2D space on a regular grid
• Quantize each sample (round to “nearest integer”)

• Image thus represented as a matrix of integer values.

2D

1D

Adapted from S. Seitz
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Matlab – images are matrices

>> im = imread('peppers.png');  % semicolon or many numbers

>> imgreen = im(:,:,2);

>> imshow(imgreen)

>> line([1 512], [256 256],'color','r')

>> plot(imgreen(256,:));

100 200 300 400 500

100

200

300

400

500



Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Noise in images
• Noise as an example of images really being functions

• Noise is just another function that is combined with the 
original function to get a new – guess what – function 

• In images noise looks, well, noisy.

'( , ) ( , ) ( , )I x y I x y x yη= +
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Common types of noise
• Salt and pepper noise: 

random occurrences of   
black and white pixels

• Impulse noise: random 
occurrences of white 
pixels

• Gaussian noise: 
variations in intensity 
drawn from a Gaussian 
normal distribution

Source: S. Seitz



Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Gaussian noise

Fig: M. Hebert

>> noise = randn(size(im)).*sigma;

>> output = im + noise;
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Image shows 
the noise 
values 
themselves.

Sigma = 2 Sigma = 8

Sigma = 32 Sigma = 64

noise = randn(size(im)).*sigma;

Effect of σ on Gaussian noise
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BE VERY CAREFUL!!!
• In previous slides, I did not say (at least wasn’t supposed to 

say) what the range of the image was.  A 𝜎𝜎 of 1.0 would be tiny 
if the range is [0 255] but huge if [0.0 1.0].

• Matlab can do either and you need to be very careful.  If in 
doubt convert to double.

• Even more difficult can be displaying the image.  Things like:
• imshow(I,[LOW HIGH])

display the image from [low high]

Don’t worry – you’ll get used to these hassles… see problem set 
PS0. 
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Back to our program…
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Suppose want to remove the noise…
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First attempt at a solution
• Suggestions? 
• Let’s replace each pixel with an average of all the values 

in its neighborhood
• Assumptions: 

• Expect pixels to be like their neighbors
• Expect noise processes to be independent from pixel to pixel

K. Grauman
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First attempt at a solution
• Let’s replace each pixel with an average of all the values 

in its neighborhood
• Moving average in 1D:

Source: S. Marschner
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Weighted Moving Average
• Can add weights to our moving average
• Weights [1, 1, 1, 1, 1]  / 5 

Source: S. Marschner
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Weighted Moving Average
• Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner
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Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Reference
point
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Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz
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Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz
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Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz



Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz



Linear Filtering/ConvolutionCS 4495 Computer Vision – A. Bobick

Moving Average In 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz
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Moving Average In 2D

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz
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Correlation filtering
Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in 
neighborhood around  image 
pixel F[i,j]

Attribute uniform 
weight to each 
pixel

Now generalize to allow different weights depending on  
neighboring pixel’s relative position:

Non-uniform weights
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Correlation filtering

Filtering an image: replace each pixel with a linear 
combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the 
weights in the linear combination.

This is called cross-correlation, denoted 
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Averaging filter
• What values belong in the kernel H for the moving 

average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111
111
111

“box filter”

?
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Smoothing by averaging
depicts box filter: 
white = high value, black = low value

original filtered
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Squares aren’t smooth…

• Smoothing with an average 
actually doesn’t compare at all 
well with a defocussed lens

• Most obvious difference is that a 
single point of light viewed in a 
defocussed lens looks like a 
fuzzy blob; but the averaging 
process would give a little 
square.

• More about “impulse” responses 
later…

D. Forsyth
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Gaussian filter
• What if we want nearest neighboring pixels to have the 

most influence on the output?
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

This kernel is an 
approximation of a 
Gaussian function:

Source: S. Seitz
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The picture shows a 
smoothing kernel 
proportional to            

(which is a reasonable 
model of a circularly 
symmetric fuzzy blob)

An Isotropic Gaussian

D. Forsyth

2 2

2e ( )
2

x ( )p x x
σ
+

−
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Smoothing with a Gaussian

D. Forsyth
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Smoothing with not a Gaussian

D. Forsyth
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Gaussian filters
• What parameters matter here?
• Size of kernel or mask

• Note, Gaussian function has infinite support, but discrete 
filters use finite kernels

σ = 5 with 
10 x 10 
kernel

σ = 5 with 
30 x 30 
kernel

K. Grauman
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Gaussian filters
• What parameters matter here?
• Variance of Gaussian: determines extent of 
smoothing

σ = 2 with 
30 x 30 
kernel

σ = 5 with 
30 x 30 
kernel

K. Grauman
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Matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’, hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h);
>> imshow(outim);

outim
K. Grauman
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Smoothing with a Gaussian

for sigma=1:3:10 
h = fspecial('gaussian‘, fsize, sigma);
out = imfilter(im, h); 
imshow(out);
pause; 

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 
kernel, and controls the amount of smoothing.

K. Grauman
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More Gaussian noise (like earlier) σ W
ider G

aussian sm
oothing kernel σ


Keeping the two Gaussians straight…
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And now some linear intuition…
An operator  𝐻𝐻 (or system) is linear if two properties hold 
(𝑓𝑓𝑓 and 𝑓𝑓𝑓 are some functions, 𝑎𝑎 is a constant):

• Additivity (things sum) (superposition):
𝐻𝐻(𝑓𝑓𝑓 + 𝑓𝑓𝑓) = 𝐻𝐻(𝑓𝑓𝑓) + 𝐻𝐻(𝑓𝑓𝑓) (looks like distributive law)

• Multiplicative scaling (Homogeneity of degree 1)
𝐻𝐻(𝑎𝑎 � 𝑓𝑓𝑓) = 𝑎𝑎 � 𝐻𝐻(𝑓𝑓𝑓)

Because it is sums and multiplies, the 
“filtering” operation we were doing are linear. 
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An impulse function…
• In the discrete world, and impulse is a very easy signal to 

understand: it’s just a value of 1 at a single location. 

• In the continuous world, an impulse is an idealized 
function that is very narrow and very tall so that it has a 
unit area.   In the limit: 

1.0

Area = 1.0
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An impulse response
• If I have an unknown system and I “put in” an impulse, the 

response is called the impulse response.  (Duh?)

• So if the black box is linear you can describe 𝐻𝐻 by ℎ 𝑥𝑥 .
Why? 

“Black Box”

H
(or ℎ(𝑡𝑡))
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Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

What is the result of filtering the impulse signal 
(image) F with the arbitrary kernel H?

?

K. Grauman

=
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Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0=
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Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0=
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Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f=
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Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f=
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Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f e=
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Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f e d=
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Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f e d=
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Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f e d

c
=
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Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i
0 f e d

c
=
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“Filtering” an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

i h g

f e d

c b a

If you just “filter” meaning slide the kernel over the 
image you get a reversed response.

=

Center coordinate is 0,0!
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Convolution

• Convolution: 
• Flip where the filter is applied in both dimensions (bottom to top, 

right to left)
• Then apply cross-correlation

Notation for 
convolution 
operator

H*

F

K. Grauman

H**G H F=

[ , ] [ , ] [ , ]
k k

u k v k
H u v F iG i u j vj

=− =−
− −∑ ∑=

Centered at zero!
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One more thing…
• Shift invariant: 

• Operator behaves the same everywhere, i.e. the value 
of the output depends on the pattern in the image 
neighborhood, not the position of the neighborhood.
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Properties of convolution
• Linear & shift invariant

• Commutative:

f * g = g * f

• Associative

(f * g) * h = f * (g * h)

• Identity:

unit impulse e = […, 0, 0, 1, 0, 0, …].  f * e = f

• Differentiation:

We’ll use 
this later!

g) = ( *ff g
x x
∂ ∂

∂
∗

∂
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Convolution vs. correlation
Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

K. Grauman
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Computational Complexity 
• If an image is NxN and a kernel (filter) is WxW, how many 

multiplies do you need to compute a convolution?

• You need N*N*W*W = N2W2

• which can get big (ish)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

i h g

f e d

c b a
=

N x N

W x W
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Separability

• Now we’re going to take advantage of the associative 
property of convolution.   

• In some cases, filter is separable, meaning you can get the 
square kernel H by convolving a single column vector by 
some row vector: 

c

r

H
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Separability

• So we do two convolutions but each is W*N*N.  So this is 
useful if W is big enough such that 𝑓𝑊𝑊𝑁𝑁2 ≪ 𝑊𝑊2𝑁𝑁2

• Used to be very important.   Still, if W=31, save a factor of 
15. 

* ( * ) * * ( * )G H F C R F C R F= = =

c

r

H
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Boundary issues
• What is the size of the output?
• Old MATLAB: filter2(g, f, shape)

• shape = ‘full’: output size is sum of sizes of f and g
• shape = ‘same’: output size is same as f
• shape = ‘valid’: output size is difference of sizes of f and g 

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik
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Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)

Source: S. Marschner
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Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)
• wrap around

Source: S. Marschner
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Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)
• wrap around
• copy edge

Source: S. Marschner
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Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge

Source: S. Marschner
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Boundary issues
• What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods (new MATLAB):

• clip filter (black): imfilter(f, g, 0)
• wrap around: imfilter(f, g, ‘circular’)
• copy edge: imfilter(f, g, ‘replicate’)
• reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner
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Predict the filtered outputs

000
010
000

* = ?
000
100
000

* = ?

111
111
111

000
020
000 -* = ?

K. Grauman
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Practice with linear filters

000
010
000

Original

?

Source: D. Lowe
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Practice with linear filters

000
010
000

Original Filtered 
(no change)

Source: D. Lowe
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Practice with linear filters

000
100
000

Original

?

Source: D. Lowe
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Practice with linear filters

000
100
000

Original Shifted left
by 1 pixel 
with 
correlation

Source: D. Lowe

Center coordinate is 0,0!
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Practice with linear filters

Original

?
111
111
111

Source: D. Lowe
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Practice with linear filters

Original

111
111
111

Blur (with a
box filter)

Source: D. Lowe
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Practice with linear filters

Original

111
111
111

000
020
000 - ?

Source: D. Lowe
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Practice with linear filters

Original

111
111
111

000
020
000 -

Sharpening filter
- Accentuates differences 
with local average

Source: D. Lowe
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Filtering examples: sharpening

K. Grauman
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Effect of smoothing filters

Additive Gaussian noise Salt and pepper noise

K. Grauman
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Median filter

• No new pixel values 
introduced

• Removes spikes: good 
for impulse, salt & 
pepper noise

• Linear?

K. Grauman
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Median filter

Salt and 
pepper 
noise

Median 
filtered

Source: M. Hebert

Plots of a row of the 
image
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Median filter
• Median filter is edge preserving

K. Grauman
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To do:

• Problem set 0 available; due 11:59pm Thurs Aug 29th

• Problem set 1 – Filtering, Edges, Hough – will be handed 
out Aug 28th (Thurs) and is due Sun Sept 7, 11:59pm.
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