CS 4495 Computer Vision

Linear Filtering 1: Filters, Convolution, Smoothing

Aaron Bobick
School of Interactive Computing

Administrivia - Fall 2014

August 26:
There are a lot of you!
4495A - about 62 undergrads
4495GR - 40 grad students - mostly MS(CS)
7495 - 40 mostly PhD students

- Still working on the CS7495 model. We will not meet tonight I'll be working on your web site instead. Still need a room.
- 4495: PS0 can now be handed in.
- 4495: PS1 will be out Thursday - due next Sunday (Sept 7) 11:55pm.

Linear outline (hah!)

- Images are really functions $\vec{I}(x, y)$ where the vector can be any dimension but typical are 1,3 , and 4 . (When 4?) Or thought of as a multi-dimensional signal as a function of spatial location.
- Image processing is (mostly) computing new functions of image functions. Many involve linear operators.
- Very useful linear operator is convolution /correlation what most people call filtering - because the new value is determined by local values.
- With convolution can do things like noise reduction, smoothing, and edge finding (last one is next time).

Images as functions

Source: S. Seitz

Images as functions

- We can think of an image as a function, for I, from R^{2} to R :
$f(x, y)$ gives the intensity or value at position (x, y)
Realistically, we expect the image only to be defined over a rectangle, with a finite range:
$f:[a, b] \times[c, d] \rightarrow[0,1.0]$ (why sometimes 255 ???)
- A color image is just three functions "pasted" together. We can write this as a "vector-valued" function:

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

The real Arnold

ans $=$										
152	122	99	83	122	120	154	150	123	141	112
102	140	109	114	125	124	69	134	123	141	132
138	160	135	109	104	89	91	145	128	102	154
101	147	165	87	93	97	110	145	157	124	141
58	68	96	115	80	98	137	160	145	168	166
57	127	62	92	145	127	93	121	168	221	157
69	108	74	71	156	119	106	140	156	161	158
116	132	101	60	134	159	110	125	153	145	123
109	119	130	113	80	176	121	108	111	152	133
135	77	102	134	127	136	154	130	139	120	160
175	127	112	145	153	125	160	126	103	94	166
205	187	151	87	128	154	124	174	96	129	142
206	211	207	171	153	146	173	194	125	129	164
214	205	235	200	170	162	151	151	183	152	107
225	199	211	203	125	145	154	181	201	184	137
207	203	172	169	170	127	116	95	197	187	138
171	208	150	157	184	153	109	119	148	182	138
111	170	150	116	128	170	144	132	119	176	132
101	172	168	130	112	131	116	136	129	137	121
103	167	164	131	104	106	96	111	106	103	139
92	136	146	138	92	63	73	101	120	126	134

Digital images

- In computer vision we typically operate on digital (discrete) images:
- Sample the 2D space on a regular grid
- Quantize each sample (round to "nearest integer")
- Image thus represented as a matrix of integer values.

62	79	23	119	120	105	4	0
10	10	9	62	12	78	34	0
10	58	197	46	46	0	0	48
176	135	5	188	191	68	0	49
2	1	1	29	26	37	0	77
0	89	144	147	187	102	62	208
255	252	0	166	123	62	0	31
166	63	127	17	1	0	99	30

Matlab - images are matrices

```
>> im = imread('peppers.png'); % semicolon or many numbers
>> imgreen = im(:,:,2);
>> imshow(imgreen)
>> line([1 512], [256 256],'color','r')
>> plot(imgreen(256,:));
```


Noise in images

- Noise as an example of images really being functions
- Noise is just another function that is combined with the original function to get a new - guess what - function

$$
\vec{I}^{\prime}(x, y)=\vec{I}(x, y)+\vec{\eta}(x, y)
$$

- In images noise looks, well, noisy.

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian noise

$$
\begin{aligned}
f(x, y)=\overbrace{\tilde{f}(x, y)}^{\text {Ideal } \text { Image }} & +\overbrace{\eta(x, y)}^{\text {Noise process }} \quad \begin{array}{l}
\text { Gaussian i.i.d. ("white") noise: } \\
\eta(x, y) \sim \mathcal{N}(\mu, \sigma)
\end{array} \\
& \gg \text { noise }=\operatorname{randn}(\operatorname{size}(\mathbf{i m})) . \text { *sigma; } \\
& \gg \text { output }=\mathbf{i m}+\text { noise; }
\end{aligned}
$$

Fig: M. Hebert

Effect of σ on Gaussian noise

Image shows the noise values themselves.

BE VERY CAREFUL!!!

- In previous slides, I did not say (at least wasn't supposed to say) what the range of the image was. A σ of 1.0 would be tiny if the range is [0255] but huge if [0.0 1.0].
- Matlab can do either and you need to be very careful. If in doubt convert to double.
- Even more difficult can be displaying the image. Things like:
- imshow (I,[LOW HIGH])
display the image from [low high]

Don't worry - you'll get used to these hassles... see problem set PSO.

Back to our program...

Suppose want to remove the noise...

First attempt at a solution

- Suggestions?
- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
- Expect pixels to be like their neighbors
- Expect noise processes to be independent from pixel to pixel

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in 1D:

Weighted Moving Average

- Can add weights to our moving average
- Weights [1, 1, 1, 1, 1] / 5

Weighted Moving Average

- Non-uniform weights [1, 4, 6, 4, 1] / 16

Moving Average In 2D

Reference point $F[x, y]$
$G[x, y]$

Moving Average In 2D

$F[x, y]$

$G[x, y]$

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Moving Average In 2D

$F[x, y]$

$G[x, y]$

	0	10							

Moving Average In 2D

$F[x, y]$

$G[x, y]$

		-			
	${ }^{20} 20$				

Moving Average In 2D

$F[x, y]$

$G[x, y]$

	0	10	20	30					

Moving Average In 2D

$F[x, y]$

$G[x, y]$

	0	10	20	30	30				

Moving Average In 2D

$F[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$G[x, y]$

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

Correlation filtering

Say the averaging window size is $2 \mathrm{k}+1 \times 2 \mathrm{k}+1$:

$$
G[i, j]=\underbrace{\frac{1}{(2 k+1)^{2}}} \underbrace{\sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u, j+v]}
$$

Attribute uniform Loop over all pixels in weight to each neighborhood around image pixel pixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} \underbrace{H[u, v]}_{\text {Non-uniform weights }} F[i+u, j+v]
$$

Correlation filtering

$$
G[i, j]=\sum_{i}^{k} \sum_{b}^{k} H[u, v] F[i+u, j+v]
$$

This is called cross-correlation, denoted $G=H \otimes F$
Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" $H[u, v]$ is the prescription for the weights in the linear combination.

Averaging filter

- What values belong in the kernel H for the moving average example?

| \boldsymbol{H} | $\boldsymbol{C}, \boldsymbol{U}, \boldsymbol{U}$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 90 | 0 | 90 | 90 | 90 | 0 | 0 |
| 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | | | | | | |

"box filter"
$G[x, y]$

	0	10	20	30	30				

$$
G=H \otimes F
$$

Smoothing by averaging

\longleftarrow depicts box filter: \quad white = high value, black = low value

original

filtered

Squares aren't smooth...

- Smoothing with an average actually doesn't compare at all well with a defocussed lens
- Most obvious difference is that a single point of light viewed in a defocussed lens looks like a fuzzy blob; but the averaging process would give a little square.

- More about "impulse" responses later...

Gaussian filter

- What if we want nearest neighboring pixels to have the most influence on the output?

This kernel is an approximation of a Gaussian function:

$$
h(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{\sigma^{2}}}
$$

An Isotropic Gaussian

The picture shows a smoothing kernel proportional to

$$
\exp \left(-\frac{\left(x^{2}+x^{2}\right)}{2 \sigma^{2}}\right)
$$

(which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian

Smoothing with not a Gaussian

\square

Gaussian filters

-What parameters matter here?

- Size of kernel or mask
- Note, Gaussian function has infinite support, but discrete filters use finite kernels

Gaussian filters

-What parameters matter here?

- Variance of Gaussian: determines extent of smoothing

$\sigma=2$ with
30×30
kernel

$\sigma=5$ with
30×30
kernel
>> sigma = 5;
>> h = fspecial('gaussian', hsize, sigma);
>> mesh(h);
>> imagesc(h); 0
>> outim = imfilter(im, h);
>> imshow(outim);

outim
K. Grauman

Smoothing with a Gaussian

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.


```
for sigma=1:3:10
    h = fspecial('gaussian', fsize, sigma);
    out = imfilter(im, h);
    imshow(out);
    pause;
end
```


Keeping the two Gaussians straight...

 More Gaussian noise (like earlier) $\sigma \rightarrow$

And now some linear intuition...

An operator H (or system) is linear if two properties hold ($f 1$ and $f 2$ are some functions, a is a constant):

- Additivity (things sum) (superposition):

$$
H(f 1+f 2)=H(f 1)+H(f 2) \quad \text { (looks like distributive law) }
$$

- Multiplicative scaling (Homogeneity of degree 1) $H(a \cdot f 1)=a \cdot H(f 1)$

Because it is sums and multiplies, the "filtering" operation we were doing are linear.

An impulse function...

- In the discrete world, and impulse is a very easy signal to understand: it's just a value of 1 at a single location.

- In the continuous world, an impulse is an idealized function that is very narrow and very tall so that it has a unit area. In the limit:

An impulse response

- If I have an unknown system and I "put in" an impulse, the response is called the impulse response. (Duh?)

- So if the black box is linear you can describe H by $h(x)$. Why?

Filtering an impulse signal

What is the result of filtering the impulse signal (image) F with the arbitrary kernel H ?

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$F[x, y]$

Filtering an impulse signal

"Filtering" an impulse signal

If you just "filter" meaning slide the kernel over the image you get a reversed response.

Convolution

- Convolution:
- Flip where the filter is applied in both dimensions (bottom to top, right to left)
- Then apply cross-correlation

$$
G[i, j]=\sum_{u=k}^{k} \sum_{v=k}^{k} H[u, v] F[i-u, j-v]
$$

$G=H^{*} F$ \uparrow

Notation for convolution operator

One more thing...

- Shift invariant:
- Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

Properties of convolution

- Linear \& shift invariant
- Commutative:

$$
f * g=g * f
$$

- Associative

$$
(f * g) * h=f *(g * h)
$$

- Identity:
unit impulse $e=[\ldots, 0,0,1,0,0, \ldots] . f * e=f$
- Differentiation:

$$
\frac{\partial}{\partial x}(f * g)=\frac{\partial f}{\partial x} * \underbrace{g \quad}_{\begin{array}{c}
\text { We'll use } \\
\text { this later! }
\end{array}}
$$

Convolution vs. correlation

Convolution

$$
\begin{aligned}
G[i, j] & =\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v] \\
G & =H \star F
\end{aligned}
$$

Cross-correlation

$$
\begin{aligned}
G[i, j] & =\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v] \\
G & =H \otimes F
\end{aligned}
$$

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

Computational Complexity

- If an image is $N x N$ and a kernel (filter) is WxW, how many multiplies do you need to compute a convolution?

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

W x W

N x N

- You need $N * N * W * W=N^{2} W^{2}$
- which can get big (ish)

Separability

- Now we're going to take advantage of the associative property of convolution.
- In some cases, filter is separable, meaning you can get the square kernel H by convolving a single column vector by some row vector:

$$
\mathbf{r}
$$

C

H

Separability

$$
\begin{gathered}
\mathbf{r} \\
c \left\lvert\, \begin{array}{|c|c|c|c|c|}
\hline 1 \\
\hline \frac{2}{1} \\
\hline 1
\end{array} \times \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 1 \\
\hline & 2 & 1 \\
\hline 2 & 4 & 2 \\
\hline 1 & 2 & 1 \\
\hline
\end{array} \mathbf{H}\right. \\
G=H * F=(C * R) * F=C *(R * F)
\end{gathered}
$$

- So we do two convolutions but each is $\mathrm{W}^{*} \mathrm{~N} * \mathrm{~N}$. So this is useful if W is big enough such that $2 W N^{2} \ll W^{2} N^{2}$
- Used to be very important. Still, if $\mathrm{W}=31$, save a factor of 15.

Boundary issues

- What is the size of the output?
- Old MATLAB: filter2(g, f, shape)
- shape = 'full': output size is sum of sizes of f and g
- shape = 'same': output size is same as f
- shape = 'valid': output size is difference of sizes of f and g

same

valid

Boundary issues

- What about near the edge?
- the filter window falls off the edge of the image
- need to extrapolate
- methods:
- clip filter (black)

Boundary issues

-What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
- clip filter (black)
- wrap around

Boundary issues

-What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
- clip filter (black)
- wrap around
- copy edge

Boundary issues

- What about near the edge?
- the filter window falls off the edge of the image
- need to extrapolate
- methods:
- clip filter (black)
- wrap around
- copy edge
- reflect across edge

Boundary issues

- What about near the edge?
- the filter window falls off the edge of the image
- need to extrapolate
- methods (new MATLAB):
- clip filter (black):
- wrap around:
- copy edge:
- reflect across edge:
imfilter(f, g, 0)
imfilter(f, g, 'circular')
imfilter(f, g, 'replicate')
imfilter(f, g, ‘symmetric')

Predict the filtered outputs

Practice with linear filters

0	0	0
0	1	0
0	0	0

?

Original

Practice with linear filters

Original

Filtered (no change)

Practice with linear filters

0	0	0
0	0	1
0	0	0

?

Original

Practice with linear filters

Original

Center coordinate is 0,0!

Shifted left by 1 pixel with correlation

Practice with linear filters

Original

Practice with linear filters

$\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Original

Practice with linear filters

0	0	0
0	2	0
0	0	0

$-\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Original

Practice with linear filters

Original

0	0	0
0	2	0
0	0	0

Sharpening filter

- Accentuates differences with local average

Filtering examples: sharpening

before

after

Effect of smoothing filters

5×5

Additive Gaussian noise

Salt and pepper noise

Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt \& pepper noise
- Linear?

Median filter

Salt and pepper noise

Median filtered

Plots of a row of the image

Median filter

- Median filter is edge preserving

To do:

- Problem set 0 available; due 11:59pm Thurs Aug 29 ${ }^{\text {th }}$
- Problem set 1 - Filtering, Edges, Hough - will be handed out Aug $28^{\text {th }}$ (Thurs) and is due Sun Sept 7, 11:59pm.

