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Administrivia 
• This lecture is really Chapter 6 of the Hastie book. 
• Slides brought to you buy Bibhas Chakraborty  and 

friends 
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1-Nearest Neighbor 
• Define a distance d(x1,x2) between any 2 examples 

• examples are feature vectors 
• so could just use Euclidean distance …  

 
• Training: Index the training examples for fast lookup.   
• Test: Given a new x, find the closest x1 from training. 

Classify x the same as x1 (positive or negative) 
 

• Can learn complex decision boundaries 
• As training size  ∞, error rate is at most 2x the Bayes-

optimal rate (i.e., the error rate you’d get from knowing 
the true model that generated the data – whatever it is!)  
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1-Nearest Neighbor – decision boundary 
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k-Nearest Neighbor 

• Average of k points more reliable when: 
• noise in training vectors x 
• noise in training labels y 
• classes partially overlap 
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Instead of picking just the single nearest neighbor, pick 
the k nearest neighbors and have them vote 
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15 Nearest Neighbors – it’s smoother… 
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 How to choose “k” 
• Odd k (often 1, 3, or 5): 

• Avoids problem of breaking ties (in a binary classifier) 
• Large k: 

• less sensitive to noise (particularly class noise) 
• better probability estimates for discrete classes 
• larger training sets allow larger values of k 

• Small k: 
• captures fine structure of problem space better 
• may be necessary with small training sets 

• Balance between large and small k 
• What does this remind you of? 

• As training set approaches infinity, and k grows large, kNN 
becomes Bayes optimal 

• But with finite N, how to choose K?  
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Performance Assessment: Loss Function 
• Typical choices for quantitative response Y: 
                                                        (squared error) 
                                                        (absolute error) 
• Typical choices for categorical response G: 
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Training Error 𝑒𝑒𝑒𝑒𝑒𝑒 
• Training error is the average loss over the training 

sample. 
• For the quantitative response variable Y: 

 
    
• For the categorical response variable G: 
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Prediction Error vs Test (Generalization) Error  

• Test or generalization error an independent test 
sample is conditioned on the training set 𝛵𝛵  

• Expected prediction error is expectation over training 
sets.  We often ignore these differences (until CV). 

• For quantitative response Y: 
 
 

• For categorical response G: 
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Bias, Variance and Model Complexity 
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What do we see from the preceding figure? 

• There is an optimal model complexity that gives 
minimum test error. 

• Training error is not a good estimate of the test error. 
• There is a bias-variance tradeoff in choosing the 

appropriate complexity of the model. 
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Goals 
• Model Selection: estimating the performance of 

different models in order to choose the best one. 
• Model Assessment: having chosen a final model, 

estimating its generalization error on new data. 
• Model Averaging: averaging the predictions from 

different models to achieve improved performance. 



Model Selection CS7616 Pattern Recognition  – A. Bobick 

Splitting the data 
• “In a data rich situation” split the dataset into three 

parts:     
Training set: used to fit the models. 
Validation set: used to estimate prediction error for 
model selection. 
Test set: used to assess the generalization error for the 
final chosen model. 
• But in reality we are not so clean. 
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The Bias-Variance Decomposition 
• Using regression as model, assume that  
𝑌𝑌 = 𝑓𝑓 𝑋𝑋 + ε  where  𝐸𝐸 𝜀𝜀 = 0 and 𝑉𝑉𝑉𝑉𝑒𝑒 𝜀𝜀 = 𝜎𝜎𝜀𝜀2.  
Then at an input point   𝑋𝑋 = 𝑥𝑥0:   
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k-NN regression example 
• Assume average of k nearest neighbors: 

 
 
 
 

• For small k, good fit (small bias), larger variance.  For 
big k, more bias, less variance. 

• This is a model selection problem. 
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In-sample and Extra-sample Error 
• In-sample error is the average prediction error, 

conditioned on the training sample x’s. It is obtained 
when new responses are observed for the training set 
features.  
 
 
 

• Extra-sample error is the average prediction error 
when both features and responses are new. 
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Optimism of the Training Error Rate 
• Typically, the training error rate will be less than the 

true test error.  Why? 
• Define the optimism as the expected difference 

between Errin and the training error: 
 
 
 

• Can define an expected optimism over training sets 
but we won’t here. 
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Optimism (cont’d) 
• For squared error, 0-1, and other loss function, “it can 

be shown” generally that  
 
 

• Therefore  
 
 

• Can be simplified as                                            for the 
model 𝑌𝑌 = 𝑓𝑓 𝑋𝑋 + 𝜀𝜀  by a linear fit with d inputs.   
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The more influence 𝑦𝑦𝑖𝑖 has 
on its own prediction the 
more optimistic you are.  
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How to estimate prediction error? 
• Estimate the optimism and then add it to the training 

error rate.  
• Methods such as AIC, BIC work in this way for a special class 

of estimates that are linear in their parameters. 

• Estimating in-sample error is used for model selection. 
 

• Methods like cross-validation and bootstrap: 
     - direct estimates of the extra-sample error. 
     - can be used with any loss function. 
     - used for model assessment. 
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Estimates of In-Sample Prediction Error 
• General form  
• Cp statistic (when d parameters are fitted under 

squared error loss):  
 
 
• AIC (Akaike information criterion), a more generally 

applicable estimate of Errin when a log-likelihood loss 
function is used: 
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More on AIC  
• Four Gaussian, AIC is identical to Cp 

 
 

• Given a set of models 𝑓𝑓𝛼𝛼 𝑥𝑥  indexed by a tuning 
parameter 𝛼𝛼, define  
 

 
• Find the tuning parameter 𝛼𝛼� that minimizes the 

function, and the final chosen model is𝑓𝑓𝛼𝛼� 𝑥𝑥  
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Bias, Variance and prediction error 
• Phoneme example of Hastie using logistic regression 
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Bayesian Information Criterion (BIC) 
• Model selection tool applicable in settings where the 

fitting is carried out by maximization of a log-
likelihood. 

• Motivation from Bayesian point of view. 
• BIC tends to penalize complex models more heavily, 

giving preference to simpler models in selection. 
• Its generic form is: 
• If Gaussian (Hastie 233): 

.)(log)(log2 dNlikBIC ⋅+⋅−=
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Bayesian Model Selection 
• Suppose we have candidate models            
    with corresponding model parameters 
• Prior distribution: 
• Posterior probability: 

 
• Compare two models via posterior odds:  

 
 

• The second factor on the RHS is called the Bayes factor and 
describes the contribution of the data towards posterior 
odds. 
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• Using Laplace approximation (see Murphy), one can 
establish a simple (but approximate) relationship 
between posterior model probability and the BIC. 
 

 
• If we define the loss function 

then for Gaussian: 
 
 

• So BIC is Bayes!  

Bayes and BIC (cont) 
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Digression…. Josh Tennenbaum 
• I have a model to produce numbers between 0 and 

100. 
• I tell you four of my numbers are 8, 32, 2, 64 

 
• Do you guess the evens?  The numbers between 2 and 

64?   Other guesses?  Which seems best? 
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Bayesian Approach Continued 

• Unless strong evidence to the contrary, we typically 
assume that prior over models is uniform (non-
informative prior). 
 

• Lower BIC implies higher posterior probability of the 
model. Use of BIC as model selection criterion is thus 
justified. 



Model Selection CS7616 Pattern Recognition  – A. Bobick 

AIC or BIC? 

• BIC is asymptotically consistent as a selection criterion. 
That means, given a  family of models including the true 
model, the probability that BIC will select the correct 
one approaches one as the sample size becomes large. 

• AIC does not have the above property. Instead, it tends 
to choose more complex models as 

• For small or moderate samples, BIC often chooses 
models that are too simple, because of its heavy penalty 
on complexity.  

.∞→N
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Cross-Validation 
• The simplest and most widely used method for 

estimating prediction error. 
 

• The idea is to directly estimate the extra sample error 
𝐸𝐸𝑒𝑒𝑒𝑒 = 𝐸𝐸 𝐿𝐿 𝑌𝑌, 𝑓𝑓 𝑋𝑋  , when the method 𝑓𝑓(𝑥𝑥) is 
applied to an independent test sample.  
 

• In K-fold cross-validation, we split the data into  
roughly equal-size parts. For the  k-th part, fit the 
model to the other  K-1 parts and calculate the 
prediction error of the fitted model when predicting 
the k-th part of the data. 
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• The cross-validation estimate of prediction error is 
  

 
 

• This 𝐶𝐶𝑉𝑉(𝛼𝛼) provides an estimate of the test error, and 
we find the tuning parameter 𝛼𝛼�  minimizes it. 

• Our final chosen model will be 𝑓𝑓 𝑥𝑥,𝛼𝛼�  which we fit to 
all the data. 
 

Cross-Validation (Cont’d) 
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Value of K? 
• If  𝐾𝐾 = 𝑁𝑁  CV is approximately unbiased, but has high 

variance. The computational burden is also high. 
• On the other hand, with, say, 𝐾𝐾 = 5 CV has low 

variance but more bias. 
• If the learning curve has a considerable slope at the 

given training set size, 5-fold, 10-fold CV will 
overestimate the true prediction error… 
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The Learning Curve 
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Some funny things… 
• Simulation: N=50  samples of two classes, 2000 

predictor variables  
• Screen the predictors: find a subset of “good” 

predictors that show fairly strong (univariate) 
correlation with the class labels 

• 2. Using just this subset of predictors, build a 
multivariate classifier (say 1-NN). 

• 3. Use cross-validation to estimate the unknown 
tuning parameters and to estimate the prediction 
error of the final model. 
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What happened? 
• Actually the predictors were uncorrelated to label 

(error should be 50%) 
 

• Using 1-NN showed a CV error of 3%!!! 
 

• How did that happen? 
 

• Step 1 – already saw the labels!!! Not a real CV.  You 
must remove the k-th part completely.  
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CV behavior as function of K 

X is 20 dim vector on 
0 1 20.Y is 1 if sum of 

the first 10 elements is 
great than 5, otherwise 
0.  Use best subset 
linear regression of size 
p. 
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End 
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How to estimate prediction error? 

 

• Estimate the optimism and then add it to the training 
error rate.  

    -- Methods such as AIC, BIC work in this way for a 
special class of estimates that are linear in their 
parameters. 

• Estimating in-sample error is used for model selection. 
• Methods like cross-validation and bootstrap: 
     - direct estimates of the extra-sample error. 
     - can be used with any loss function. 
     - used for model assessment. 
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From Hastie, Tibshirani, Friedman 2001 p419 

slide thanks to Rich Caruana (modified) 

why? 
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Cross-Validation 
• Models usually perform better on training data than 

on future test cases 
• 1-NN is 100% accurate on training data! 
• “Leave-one-out” cross validation:  

• “remove” each case one-at-a-time 
• use as test case with remaining cases as train set 
• average performance over all test cases 

• LOOCV is impractical with most learning methods, but 
extremely efficient with MBL! 
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Advantages of Memory-Based Methods 
• Lazy learning: don’t do any work until you know what you 

want to predict (and from what variables!) 
• never need to learn a global model 
• many simple local models taken together can represent a more 

complex global model 
• Learns arbitrarily complicated decision boundaries 
• Very efficient cross-validation 
• Easy to explain to users how it works 

• … and why it made a particular decision! 
• Can use any distance metric: string-edit distance, … 

• handles missing values, time-varying distributions, ... 

slide thanks to Rich Caruana (modified) 
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Bootstrap Method 

• General tool for assessing statistical accuracy. 
• Suppose we have a model to fit the training data 
     
• The idea is to draw random samples with replacement 

of size      from the training data. This process is 
repeated     times to get   bootstrap datasets.    

• Refit the model to each of the bootstrap datasets  and 
examine the behavior of the fits over   replications.                            
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Bootstrap (Cont’d) 

• Here          is any quantity computed from the data      
From the bootstrap sampling, we can estimate any 
aspect of the distribution of 

    For example, its variance is estimated by 
 
      
     where  
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Bootstrap used to estimate prediction 
error: Mimic CV 

• Fit the model on a set of bootstrap samples keeping 
track of predictions from bootstrap samples not 
containing that observation. 

 
• The leave-one-out bootstrap estimate of prediction 

error is            
 
 

•          solves the over-fitting problem suffered by            
              but has training-set-size bias, mentioned in the 

discussion of CV. 

)1(ˆrrE

.))(ˆ,(
||

11ˆ *

1

)1( ∑∑
−∈=

−=
iCb

i
b

i

N

i
i xfyL

CN
rrE

,ˆ bootrrE



Model Selection CS7616 Pattern Recognition  – A. Bobick 

The “0.632 Estimator” 
• Average number of distinct observations in each 

bootstrap sample is approximately   
 
• Bias will roughly behave like that of two-fold cross-

validation (biased upwards). 
 

• The “0.632 estimator” is designed to get rid of this 
bias. 
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Bagging 
• Introduced by Breiman (Machine Learning, 1996). 
• Acronym for ‘Bootstrap aggregation’ . 
• It averages the prediction over a collection of 

bootstrap samples, thus reducing the variance in 
prediction. 
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Bagging (Cont’d) 

• Consider the regression problem with training data                                         
• Fit a model and get a prediction       at the input    . 
• For each bootstrap sample                           
   fit the model, get the prediction          . Then the 

bagging (or, bagged) estimate is:    
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Bagging (extended to classification) 
• Let     be a classifier for a K-class response. Consider an 

underlying indicator vector function                                      
     
   the entry in the i-th place is 1 if the prediction for     is 

the  i-th class, such that   
 
• Then the bagged estimate  
    where      is the proportion of base classifiers predicting 

class    at      where  
• Finally,     
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Bagging Example 
     
    
 
 
 
 
 
 
 

 
• The figure is taken from Pg 249 of the book The Elements of 

Statistical Learning by Hastie, Tibshirani and Friedman.  
 



Model Selection CS7616 Pattern Recognition  – A. Bobick 

Bayesian Model Averaging 
• Candidate models: 
• Posterior distribution and mean: 

 
 
 

 
• Bayesian prediction (posterior mean) is a weighted 

average of individual predictions, with weights 
proportional to posterior probability of each model.  

• Posterior model probabilities can be estimated by BIC. 
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Frequentist Model Averaging 
• Given predictions                      under squared error loss, 

we can seek the weights such that 
 
 

• The solution is the population linear regression of    on 
 
 

• Combining models never makes things worse, at the 
population level. As population regression is not available, 
it is replaced by regression over the training set, which 
sometimes doesn’t work well.  
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Stacking 
• Stacked generalization , or stacking is a way to get 

around the problem. 
• The stacking weights are given by 

 
 

• The final stacking prediction is: 
• Close connection with leave-out-one-cross-

validation. 
• Better prediction, less interpretability. 
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References 

• Hastie,T., Tibshirani, R. and Friedman, J.-The 
Elements of Statistical Learning (ch. 7 and 8) 
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Memory-Based Learning 
 

E.g., k-Nearest Neighbor 
Also known as “case-based” or “example-based” 
learning 
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Intuition behind memory-based learning 
• Similar inputs map to similar outputs 

• If not true  learning is impossible 
• If true  learning reduces to defining “similar” 

 
• Not all similarities created equal 

• guess J. D. Salinger’s weight 
• who are the similar people? 
• similar occupation, age, diet, genes, climate, … 

• guess J. D. Salinger’s IQ 
• similar occupation, writing style, fame, SAT score, … 

 
• Superficial vs. deep similarities? 

• B. F. Skinner and the behaviorism movement 

parts of slide thanks to Rich Caruana  

what do brains 
actually do? 
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1-Nearest Neighbor 
• Define a distance d(x1,x2) between any 2 examples 

• examples are feature vectors 
• so could just use Euclidean distance …  

 
• Training: Index the training examples for fast lookup.   
• Test: Given a new x, find the closest x1 from training. 

Classify x the same as x1 (positive or negative) 
 

• Can learn complex decision boundaries 
• As training size  ∞, error rate is at most 2x the Bayes-

optimal rate (i.e., the error rate you’d get from knowing 
the true model that generated the data – whatever it is!)  
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From Hastie, Tibshirani, Friedman 2001 p418 

1-Nearest Neighbor – decision boundary 
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k-Nearest Neighbor 

• Average of k points more reliable when: 
• noise in training vectors x 
• noise in training labels y 
• classes partially overlap 

attribute_1 

at
tr

ib
ut

e_
2 

+ 
+ 

+ 

+ 

+ 
+ 
+ + + 

o 
o 

o 
o 
o 

o o o o o 
o 

+ 
+ 

+ o 
o o 

slide thanks to Rich Caruana (modified) 

 Instead of picking just the single nearest neighbor, 
pick the k nearest neighbors and have them vote 
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From Hastie, Tibshirani, Friedman 2001 p418 
slide thanks to Rich Caruana (modified) 

1 Nearest Neighbor – decision boundary 
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From Hastie, Tibshirani, Friedman 2001 p418 
slide thanks to Rich Caruana (modified) 

15 Nearest Neighbors – it’s smoother! 
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 How to choose “k” 
• Odd k (often 1, 3, or 5): 

• Avoids problem of breaking ties (in a binary classifier) 
• Large k: 

• less sensitive to noise (particularly class noise) 
• better probability estimates for discrete classes 
• larger training sets allow larger values of k 

• Small k: 
• captures fine structure of problem space better 
• may be necessary with small training sets 

• Balance between large and small k 
• What does this remind you of? 

• As training set approaches infinity, and k grows large, kNN 
becomes Bayes optimal 

slide thanks to Rich Caruana (modified) 



Model Selection CS7616 Pattern Recognition  – A. Bobick 

From Hastie, Tibshirani, Friedman 2001 p419 

slide thanks to Rich Caruana (modified) 

why? 
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Cross-Validation 
• Models usually perform better on training data than 

on future test cases 
• 1-NN is 100% accurate on training data! 
• “Leave-one-out” cross validation:  

• “remove” each case one-at-a-time 
• use as test case with remaining cases as train set 
• average performance over all test cases 

• LOOCV is impractical with most learning methods, but 
extremely efficient with MBL! 

slide thanks to Rich Caruana 
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Distance-Weighted kNN 
• hard to pick large vs. small k 

• may not even want k to be constant 
• use large k, but more emphasis on nearer neighbors? 
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Combining k-NN with other methods, #1 

• Instead of having the k-NN simply vote, put them into 
a little machine learner! 

• To classify x, train a “local” classifier on its k nearest 
neighbors (maybe weighted). 
• polynomial, neural network, … 

 
 

parts of slide thanks to Rich Caruana 
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Now back to that distance function 

• Euclidean distance treats all of the input dimensions as equally 
important 
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Now back to that distance function 

• Euclidean distance treats all of the input dimensions as equally 
important 

• Problem #1:  
• What if the input represents physical weight not in pounds but in 

milligrams? 
• Then small differences in physical weight dimension have a huge effect on 

distances, overwhelming other features. 
• Should really correct for these arbitrary “scaling” issues. 

• One simple idea: rescale weights so that standard deviation = 1. 
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Now back to that distance function 

• Euclidean distance treats all of the input dimensions as equally 
important 

• Problem #2:  
• What if some dimensions more correlated with true label? 

• (more relevant, or less noisy) 
• Stretch those dimensions out so that they are more important in 

determining distance. 
• One common technique is called “information gain.” 

parts of slide thanks to Rich Caruana 
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Weighted Euclidean Distance 

• large weight si   attribute i is more important 
• small weight si    attribute i is less important 
• zero weight si    attribute i doesn’t matter 
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Now back to that distance function 

• Euclidean distance treats all of the input dimensions as equally important 
• Problem #3:  

• Do we really want to decide separately and theoretically how to scale each 
dimension?   

• Could simply pick dimension scaling factors to maximize performance on 
development data.   (maybe do leave-one-out) 
• Similarly, pick number of neighbors k and how to weight them. 

• Especially useful if performance measurement is complicated 
(e.g., 3 classes and differing misclassification costs).   
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should replot  
on log scale before measuring dist 

Now back to that distance function 

• Euclidean distance treats all of the input dimensions as equally 
important 

• Problem #4:  
• Is it the original input dimensions that we want to scale? 
• What if the true clusters run diagonally?  Or curve?   
• We can transform the data first by extracting a different, useful set 

of features from it: 
• Linear discriminant analysis 
• Hidden layer of a neural network 
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Now back to that distance function 

• Euclidean distance treats all of the input dimensions as equally 
important 

• Problem #5:  
• Do we really want to transform the data globally? 
• What if different regions of the data space behave differently? 
• Could find 300 “nearest” neighbors (using global transform), then locally 

transform that subset of the data to redefine “near” 
• Maybe could use decision trees to split up the data space first  
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Why are we doing all this preprocessing? 
• Shouldn’t the user figure out a smart way to transform the data 

before giving it to k-NN? 
 

• Sure, that’s always good, but what will the user try?   
• Probably a lot of the same things we’re discussing.   
• She’ll stare at the training data and try to figure out how to transform it 

so that close neighbors tend to have the same label.   
• To be nice to her, we’re trying to automate the most common parts of 

that process – like scaling the dimensions appropriately. 
• We may still miss patterns that her visual system or expertise can find.  

So she may still want to transform the data. 
• On the other hand, we may find patterns that would be hard for her to 

see. 
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split on feature 
that reduces our 
uncertainty most 

1607/1704 = 0.943 694/5977 = 0.116 

Tangent: Decision Trees 
(a different simple method) 

    
& Schütze 

Is this Reuters article an Earnings Announcement? 

2301/7681 = 0.3 of all docs 
contains “cents” < 2 times  contains “cents” ≥ 2 times  

contains 
“versus”  
< 2 times  

contains 
“versus”  
 ≥ 2 times  

contains 
“net”  
< 1 time  

contains 
“net”  
 ≥ 1 time  

1398/1403  
= 0.996 

209/301  
= 0.694 

“yes” 

422/541  
= 0.780 

272/5436  
= 0.050 

“no” 
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Booleans, Nominals, Ordinals, and Reals 

• Consider attribute value differences:  
   (xi – x’i): what does subtraction do? 
 

• Reals:   easy! full continuum of differences 
• Integers:  not bad: discrete set of differences 
• Ordinals:  not bad: discrete set of differences 
• Booleans:  awkward: hamming distances 0 or 1 
• Nominals? not good! recode as Booleans? 

slide thanks to Rich Caruana (modified) 
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“Curse of Dimensionality”” • Pictures on previous slides showed 2-dimensional data 
• What happens with lots of dimensions? 
• 10 training samples cover the space less & less well … 

images thanks to Charles Annis 
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“Curse of Dimensionality”” 

• A deeper perspective on this: 
• Random points chosen in a high-dimensional space tend to all be pretty much 

equidistant from one another!  
• (Proof: in 1000 dimensions, the squared distance between two random points is 

a sample variance of 1000 coordinate distances.  Since 1000 is large, this sample 
variance is usually close to the true variance.)  

• So each test example is about equally close to most training examples.   
• We need a lot of training examples to expect one that is unusually close to the 

test example. 

images thanks to Charles Annis 

 Pictures on previous slides showed 2-dimensional data 
 What happens with lots of dimensions? 
 10 training samples cover the space less & less well … 
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“Curse of Dimensionality”” 
• also, with lots of dimensions/attributes/features, the irrelevant 

ones may overwhelm the relevant ones: 
 
 
 
 

• So the ideas from previous slides grow in importance: 
• feature weights (scaling) 

• feature selection (try to identify & discard irrelevant features) 
• but with lots of features, some irrelevant ones will probably 

accidentally look relevant on the training data 
• smooth by allowing more neighbors to vote (e.g., larger k) 
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Advantages of Memory-Based Methods 
• Lazy learning: don’t do any work until you know what you 

want to predict (and from what variables!) 
• never need to learn a global model 
• many simple local models taken together can represent a more 

complex global model 
• Learns arbitrarily complicated decision boundaries 
• Very efficient cross-validation 
• Easy to explain to users how it works 

• … and why it made a particular decision! 
• Can use any distance metric: string-edit distance, … 

• handles missing values, time-varying distributions, ... 

slide thanks to Rich Caruana (modified) 
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Weaknesses of Memory-Based Methods 
• Curse of Dimensionality 

• often works best with 25 or fewer dimensions 
• Classification runtime scales with training set size 

• clever indexing may help (K-D trees? locality-sensitive hash?) 
• large training sets will not fit in memory 

• Sometimes you wish NN stood for “neural net” instead of 
“nearest neighbor”  
• Simply averaging nearby training points isn’t very subtle 
• Naive distance functions are overly respectful of the input encoding 

• For regression (predict a number rather than a class), the 
extrapolated surface has discontinuities 
 

slide thanks to Rich Caruana (modified) 
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Current Research in MBL 
• Condensed representations to reduce memory 

requirements and speed-up neighbor finding to scale to 
106–1012 cases 

• Learn better distance metrics 
• Feature selection 
• Overfitting, VC-dimension, ... 
• MBL in higher dimensions 
• MBL in non-numeric domains: 

• Case-Based or Example-Based Reasoning 
• Reasoning by Analogy 

 

slide thanks to Rich Caruana 
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References 

• Locally Weighted Learning by Atkeson, Moore, Schaal 
• Tuning Locally Weighted Learning by Schaal, Atkeson, 

Moore 
 

slide thanks to Rich Caruana 



Model Selection CS7616 Pattern Recognition  – A. Bobick 

Closing Thought 
• In many supervised learning problems, all the information you ever 

have about the problem is in the training set. 
• Why do most learning methods discard the training data after doing 

learning? 
• Do neural nets, decision trees, and Bayes nets capture all the 

information in the training set when they are trained? 
• Need more methods that combine MBL with these other learning 

methods. 
• to improve accuracy 
• for better explanation 
• for increased flexibility 

 

slide thanks to Rich Caruana 
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