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Probabilistic KNN

• KNN is a remarkably simple algorithm with proven
error-rates

• One drawback is that it is not built on any probabilistic
framework

• No posterior probabilities of class membership

• No way to infer number of neighbours or metric
parameters probabilistically

• Let us try and get around this ’problem’
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• Consider a finite data sample {(t1,x1), · · · , (tN ,xN )}
where each tn ∈ {1, · · · , C} denotes the class label and

D-dimensional feature vector xn ∈ R
D. The feature
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D has an associated metric with parameters θ

denoted as Mθ.
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• The first thing which is needed is a likelihood

• Consider a finite data sample {(t1,x1), · · · , (tN ,xN )}
where each tn ∈ {1, · · · , C} denotes the class label and

D-dimensional feature vector xn ∈ R
D. The feature

space R
D has an associated metric with parameters θ

denoted as Mθ.

• A likelihood can be formed as

p(t|X, β, k,θ,M) ≈
∏

n=1

exp

{

β
k

Mθ
∑

j∼n|k

δtntj

}

C
∑

c=1
exp

{

β
k

Mθ
∑

j∼n|k

δctn

}
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Probabilistic KNN

• The number of nearest neighbours is k and β defines a
scaling variable. The expression

Mθ
∑

j∼n|k

δtntj

denotes the number of the nearest k neighbours of xn,
as measured under the metric Mθ within N − 1 samples
from X remaining when xn is removed which we denote
as X−n, and have the class label value of tn, whilst each
of the terms in the summation of the denominator
provides a count of the number of the k neighbours of
xn which have class label equaling c.
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Probabilistic KNN

• Likelihood formed by product of terms

p(tn|xn,X−n, t−n, β, k,θ,M)

• This is a Leave-One-Out (LOO) predictive likelihood,
where t−n denotes the vector t with the n’th element
removed

• Approximate joint likelihood provides an overall measure
of the LOO predictive likelihood

• Should exhibit some resiliance to overfitting due to the
LOO nature of the approximate likelihood
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• Posterior inference will follow by obtaining the parameter
posterior distribution p(β, k,θ|t,X,M)

• Predictions of the target class label t∗ of a new datum
x∗ are made by posterior averaging such that
p(t∗|x∗, t,X,M) equals

∑

k

∫

p(t∗|x∗, t,X, β, k,θ,M)p(β, k,θ|t,X,M)dβdθ
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• Posterior inference will follow by obtaining the parameter
posterior distribution p(β, k,θ|t,X,M)

• Predictions of the target class label t∗ of a new datum
x∗ are made by posterior averaging such that
p(t∗|x∗, t,X,M) equals

∑

k

∫

p(t∗|x∗, t,X, β, k,θ,M)p(β, k,θ|t,X,M)dβdθ

• Posterior takes an intractable form so MCMC procedure
is proposed so that the following Monte-Carlo estimate
is employed

p̂(t∗|x∗, t,X,M) =
1

Ns

Ns
∑

s=1

p(t∗|x∗, t,X, β(s), k(s),θ(s),M)
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Probabilistic KNN

• Posterior sampling algorithm simple Metropolis algorithm

• Assume priors on k and β are uniform over all possible
values (integer & real)

• Proposal distribution for βnew is Gaussian i.e. N (β(i), h)

• Proposal distribution for k is uniform between Min &
Max values

index ∼ U(0, kstep + 1)

knew = kold + kinc(index);
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• Need to accept this new move using Metropolis ratio

min

{

1,
p(t|X, βnew, knew,θnew,M)

p(t|X, β, k,θ,M)

}
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Probabilistic KNN

• Need to accept this new move using Metropolis ratio

min

{

1,
p(t|X, βnew, knew,θnew,M)

p(t|X, β, k,θ,M)

}

• Builds up a Markov Chain whose stationary distribution
is p(β, k,θ|t,X,M)

• Very simple algorithm to implement - Matlab and C
implementations available
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Probabilistic KNN

• Trace of Metropolis Sampler for β & k
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Probabilistic KNN
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Figure 1: The top graph shows a histogram of the

marginal posterior for K on the synthetic Ripley

dataset and the bottom shows the 10CV error against

the value of K.
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Figure 2: The percentage test error obtained with training sets of varying size from

25 to 250 data points. For each sub-sample size, 50 random subsets were sampled and

each of these used to obtain a KNN and PKNN classifier which were then used to make

predictions on the 1000 independent test points. The mean percentage performance and

associated standard error obtained for each training set are shown in the above figure for

each classifier.
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Probabilistic KNN

Data KNN PKNN P-Value

Glass 29.91 ± 9.22 26.67 ± 8.81 0.517

Iris 5.33 ± 5.25 4.00 ± 5.62 0.537

Crabs 15.00 ± 8.82 19.50 ± 6.85 0.240

Pima 27.00 ± 8.88 24.00 ± 14.68 0.645

Soybean 14.50 ± 16.74 4.50 ± 9.56 0.155

Wine 3.922 ± 3.77 3.37 ± 2.89 0.805

Balance 11.52 ± 2.99 10.23 ± 3.02 0.324

Heart 15.18 ± 5.91 15.18 ± 4.43 1.000

Liver 33.60 ± 6.98 36.26 ± 12.93 0.705

Diabetes 25.91 ± 7.15 25.25 ± 8.11 0.970

Vehicle 36.28 ±5.16 37.22 ± 4.53 0.732
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Probabilistic KNN

Data KNN PKNN

Glass 39.55 243.52

Iris 7.58 91.8

Crabs 21.99 156.30

Pima 24.10 103.60

Soybean 1.16 38.38

Wine 27.9 144.90

Balance 609.86 555.72

Heart 96.11 145.22

Liver 116.71 189.73

Diabetes 1643.09 567.03

Vehicle 4226.69 1063.13

Table 1: The running times (seconds) for KNN with no
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Probabilistic KNN

• PKNN is a fully Bayesian method for KNN classification

• Requires MCMC therefore slow

• Possible to learn metric though this is computationally
demanding

• Predictive probabilities more useful in certain
applications - e.g. clinical prediction

• On 0-1 loss no statistically significant difference with CV
& KNN
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