
Addressing Legal Requirements in Requirements Engineering

Paul N. Otto and Annie I. Antón

Department of Computer Science

North Carolina State University

{pnotto, aianton}@ncsu.edu

Abstract
Legal texts, such as regulations and legislation, are

playing an increasingly important role in requirements

engineering and system development. Monitoring

systems for requirements and policy compliance has

been recognized in the requirements engineering

community as a key area for research. Similarly,

regulatory compliance is critical in systems that are

governed by regulations and law, especially given that

non-compliance can result in both financial and

criminal penalties. Working with legal texts can be

very challenging, however, because they contain

numerous ambiguities, cross-references, domain-

specific definitions, and acronyms, and are frequently

amended via new regulations and case law.

Requirements engineers and compliance auditors must

be able to identify relevant regulations, extract

requirements and other key concepts, and monitor

compliance throughout the software lifecycle. This

paper surveys research efforts over the past 50 years

in handling legal texts for systems development. These

efforts include the use of symbolic logic, logic

programming, first-order temporal logic, deontic logic,

defeasible logic, goal modeling, and semi-structured

representations. This survey can aid requirements

engineers and auditors to better specify, monitor, and

test software systems for compliance.

1. Introduction

The need for system developers to monitor systems

for both requirements and policy compliance has been

identified as a challenging and important problem in

the requirements engineering community [41]. In fact,

according to a survey of nearly 1,200 senior

information security professionals, compliance has

been the primary driver of information security policy

for the past two years [17]. Requirements engineers,

developers, and auditors currently face two major

problems in assessing legal compliance: (a)

determining the applicable regulations, and (b) creating

the policies necessary to achieve compliance with

those regulations [24]. Methodologies for monitoring

compliance with requirements and policies are

currently not available to developers [41]. And yet,

stakeholders need to better understand the regulations

that govern the systems for which they are responsible

and they require precise answers to specific queries

about what is allowed and what is not allowed [4, 35].

For requirements engineers, access to specific laws

and regulations has become easier with the push

towards online access to all government legislation and

regulations. However, an organization must still

identify the regulations relevant to its specific system

before it can even begin to assess its compliance with

the law. Once the relevant regulations are identified,

extracting requirements from legal texts is still a

difficult and error-prone process [46]. In addition, an

organization must still engage in traditional software

engineering activities (e.g. analysis, modeling,

development) as well as traditional security activities

(e.g. policy enforcement and auditing) in order to

properly implement compliance processes [14].

This paper surveys research efforts over the past 50

years in modeling and using legal texts for system

development. Our survey identifies the strengths and

weaknesses of each approach, and based on our

analysis of the literature to date as well as our own

prior experiences in analyzing policy and regulations

[13, 19, 37], we propose a broad set of requirements

for tool support that would aid requirements engineers

and compliance auditors. It is our hope that these

requirements will prompt serious consideration by the

requirements engineering community, as it is within

this community that we believe significant progress

can be made to address the challenges related to legal

compliance in software systems.

The remainder of this paper is organized as follows.

Section 2 discusses the nature of regulations, noting

the various characteristics that make legal texts

difficult to work with. Section 3 analyzes various

efforts from the past 50 years in modeling regulations,

extracting key concepts, and using legal texts in system

development. Based on our extensive review of prior

work, Section 4 proposes a set of broad requirements

for a comprehensive system to assist requirements

15th IEEE International Requirements Engineering Conference

1090-705X/07 $25.00 © 2007 IEEE
DOI 10.1109/RE.2007.65

5

engineers and auditors with regulatory compliance

tasks. Finally, Section 5 discusses our analysis and

outlines future work needed to realize such a system.

2. The Nature of Regulations

There are certain characteristics of regulations that

make them both useful and difficult to apply to design

methodologies. Regulations tend to be very structured

and hierarchical documents. However, agencies at the

federal, state, and local level can all specify new

regulations, and these regulations may complement,

overlap, or even contradict one another due to differing

objectives and changes over time [25]. As a result,

some areas of law undergo constant changes, whereas

other areas are relatively stable [6]. In addition,

amendments and revisions to the same piece of

regulation can lead to internal contradictions [4].

Depending on the field of law under consideration,

there may also be the complicating influence of case

law. Prior research has noted the coexistence of two

forms of law: statutory law, or the specific regulations

in force; and case law, or the interpretation of those

rules by the courts [43]. The amount and influence of

case law on any given regulation varies widely. Some

areas of law, such as tax law, are well-settled and have

a large body of case law; as such it is possible to

classify most cases as ‘routine’ [21]. Other areas, such

as information security and data privacy law, are still

emerging fields and are therefore subject to greater

fluctuation in the law’s requirements. Regulations in

these fields are relatively new and, as a result, very

little case law exists to guide requirements engineers in

interpreting the law.

In addition to case law, regulations are often

accompanied by other guiding documents on how to

interpret and use the law. Such supplemental

references may include previous administrative rulings,

reference handbooks, or other published guides to

interpreting the regulation [24]. The ambiguity

associated with regulations has forced government

agencies to provide these detailed reference materials

and instructive handbooks to aid understanding and

compliance efforts [28]. For example, the U.S.

Department of Health and Human Services publishes a

summary of the Health Insurance Portability and

Accountability Act (HIPAA)
1
 Privacy Rule and

guidance documents for implementing the HIPAA

Security Rule. Some of these supplemental guides are

created by organizations separate from the government

agencies that actually promulgated the regulations [29].

This large, diverse set of documentation can be crucial

1 Health Insurance Portability and Accountability Act of 1996,

42 U.S.C.A. 1320d to d-8 (West Supp. 1998).

for software developers who are attempting to identify

regulatory compliance requirements early in the design

process. However, requirements engineers must be

careful when using these supplemental documents, as

they do not have the same legal standing and may even

contain misinterpretations of the original regulatory

text.

Another important characteristic of regulations is

the frequent references to other sections within a given

legal text and even to other pieces of law. Much of the

prior work in computer science that examines

regulations has noted the difficulty of handling these

numerous cross-references within regulations (e.g. [7,

13, 24]). These cross-references force requirements

engineers to spend additional time reading and

understanding legal texts, before they can even begin

to extract key concepts or apply the regulations to

system design. May et al. employ a methodology to

derive formal models from regulations that they

applied to the HIPAA Privacy Rule [33]. In their study,

discussed in Section 3.6, they assume that external and

ambiguous references are satisfied by default [33].

This contradicts our own study of the HIPAA Privacy

Rule [13], discussed in Section 3.3, in which we

discovered that cross-references introduce important

constraints from other sections that restrict which rules

apply in different situations and contexts.

If references to other sections of a particular

regulation or other external laws are unaccounted for,

requirements engineers are prone to make

interpretations and inferences that are inconsistent with

the law. Such assumptions will inevitably lead to

overlooking important exceptions or priorities and

ultimately to non-compliance. Traceability within the

context of regulatory systems takes on a far greater

significance than we already afford it in the

requirements engineering community because legal

traceability is supercharged, so to speak, with priorities

and exceptions that govern special cases (e.g. which

information can be accessed, when such access is

allowed). Thus, the ability to manage cross-references

and maintain traceability from the originating law,

regulation, or policy to the relevant requirements must

be addressed in any system for supporting

requirements engineers and/or compliance auditors.

Regulations typically specify a large number of

relevant definitions and acronyms, further

complicating the job of requirements engineers and

system designers [24]. Along with cross-references,

such extensive definitions necessitate a significant

amount of domain knowledge before the regulations

are comprehensible and usable. When spread across

multiple regulations that may have overlapping,

inconsistent, or contradictory terms, the domain-

specific lexicon significantly raises the barrier to entry

6

for developers hoping to build regulatory compliance

into their software systems.

A more fundamental problem in dealing with

regulations is the fact that regulations and law are

laden, often by design, with ambiguities. For example,

§164.306(a)(2) in HIPAA requires organizations to

“protect against any reasonably anticipated threats or

hazards to the security or integrity” of protected health

information; the section does not define what

constitutes reasonable anticipation. Researchers from

our literature survey frequently note the difficulty in

identifying and resolving such ambiguities in legal

documents (e.g. [1, 13, 29, 43]).

Researchers have examined the problem of

ambiguity in natural language as it affects requirements

engineering. Kamsties characterizes ambiguity as more

problematic than other forms of defects that appear in

requirements [22]. Kamsties et al. discuss various

types of linguistic and requirements engineering-

specific, context-dependent ambiguities [23]. They also

note that using formal methods to remove ambiguities

from natural language representations simply results in

an unambiguously wrong specification [23]. Moreover,

such formal specifications are inaccessible to the

majority of stakeholders and their formality makes it

more difficult to discover ambiguities than in a natural

language representation [23]. Berry et al. present a

guide to disambiguating text for requirements

engineers and lawyers alike [8].

There are several different classifications of

ambiguities. A simple dichotomy of ambiguities is

those that are intentional –– to allow the law to be

generalized –– and those that are unintentional [1]; the

example from §164.306(a)(2) likely represents an

intentional ambiguity. Additional categorizations

include: high-level classifications (e.g. implication-

coimplication, disjunctive-conjunctive, ambiguity of

reference) [1]; categorization within specific domains,

such as software engineering, linguistics, and law [8]; a

taxonomy of ambiguities occurring in requirements

[22]; a distinction between nocuous and innocuous

ambiguities [15]; and specific types of ambiguities

uncovered during empirical analysis (e.g. conjunctions,

under-specifications) [13]. Just as courts must struggle

to interpret the law when ambiguities are present, so

must users, be they requirements engineers or

developers, make crucial interpretation decisions

during requirements gathering and software design.

3. Survey of Work with Regulations

We now examine various approaches for modeling

regulations, extracting key concepts from legal texts,

and creating compliance checking systems. In our

survey, we followed the principles of systematic

review as detailed by Kitchenham [26]. Our research

question for the survey is, “What efforts have been

made to model legal texts for use in requirements

engineering and system development?” Due to space

limitations, our methodology is not fully disclosed in

this paper. In short, we first identified potentially

relevant research through use of the ACM and IEEE

databases, then followed citations to uncover additional

papers for review; this resulted in the discovery of over

150 relevant publications. After careful analysis and

review, we included 38 papers in the following

discussion, grouped into nine categories.

3.1. Symbolic Logic

One of the earliest attempts to model legislation

involved the use of symbolic logic, also known as

mathematical logic. The approach attempted to balance

the benefits of natural language with the rigor of

symbolic logic [1], serving as a precursor for later

efforts to provide both human- and machine-readable

interpretations. Allen’s technique employed six key

logical connectives: implication, conjunction,

coimplication, exclusive disjunction, inclusive

disjunction, and negation [1]. By identifying the

logical connectives, one could largely eliminate the

unintended ambiguities present in legislative texts by

using a more mathematical representation. This effort,

while noteworthy in its systematic legal representation,

did not leverage the processing and data manipulation

capabilities of computers; it sought to answer specific

queries and make legalistic determinations, rather than

shape requirements gathering or systems development.

3.2. Knowledge Representation

Numerous approaches to representing legal text as

computer programs began in the late 1970s, largely

based on logic programming techniques. These

knowledge representation efforts were based on the

premise that a model of legal texts should closely

parallel the language of those texts [10]. As such, most

of these approaches used Prolog –– a logic

programming language targeted for knowledge

representation and expert systems –– to represent the

legal rules extracted from laws and regulations.

Specific efforts included: TAXMAN, modeling the

United States Internal Revenue Code [34]; representing

the British Nationality Act as a logic program [43];

modeling the Income Tax Act of Canada [44];

representing the United Kingdom welfare law as a

logic program [7]; ESPLEX, a logic system for

representing legal rules [10]; capturing the Indian

Central Civil Service Pension Rules in logic [42]; and

modeling the Dutch Opium Act [39]. Each of these

knowledge representation techniques would aid

requirements engineers in understanding legal texts

7

and answering specific queries during requirements

elicitation.

Knowledge representations of legal texts afford

certain advantages to system developers and

policymakers alike. Logical representations enable

users to identify unintended ambiguities in the text

[43]. This allows requirements engineers to pinpoint

specific ambiguities and resolve those issues before

system development commences. It allows

policymakers to address these ambiguities in future

amendments to the law. Developers can use expert

systems to make specific queries when issues arise

regarding compliance or design decisions. Such

targeted queries enable developers to resolve known

compliance issues with the relevant regulation(s).

Several characteristics of these systems limit the

generalizability or applicability of this research to

current regulations. The knowledge representation

approach has mainly focused on either well-settled

areas of law or regulations with minimal

accompanying case law. Most of the projects

considered themselves case studies and, to the best of

our knowledge, no final product or working system

ever resulted from the research. The goal was often to

answer specific queries or handle what-if scenarios;

none of these early efforts used the model to influence

system development or check for compliance. These

knowledge representation approaches had no degree of

automation: for each new piece of regulation, the user

would be required to manually extract the legal rules

and encode them in logical clauses. Finally, the

research efforts referenced above, with the exception

of [39], make no mention of providing traceability

between the representation and the original legal text.

As previously discussed, this lack of traceability

creates compliance vulnerabilities as the law evolves

via case law or new regulations. These drawbacks

combine to make knowledge representation techniques

problematic and very limiting for software developers

who need to extract requirements and system design

elements directly from regulations.

A more recent variation on logic programming

efforts employs event calculus to track the changes in

legal texts over time [31]. The approach uniquely

captures the frequent changes associated with legal

texts, enabling users to model and understand how the

law changed across revisions [31]. Martinek and

Cybulka create a knowledge base maintaining

information for when changes are made to regulatory

texts [31]; this provides a limited measure of

traceability for developers evaluating changes over

time. The approach provides a unique look at the

dynamic nature of legal texts, but does not address the

same aforementioned shortcomings facing other logic

programming implementations.

3.3. Deontic Logic

Another logic-based approach to modeling

regulations involves the use of deontic logic to capture

the rights and obligations present in the law. The

impetus for this approach is that “the law is like a

programming language controlling a society …

[where] observations must be made, calculations

performed, records kept and messages transmitted”

[45]. Extracting specific rights and obligations from

legal rules permits the creation of a knowledge base, as

was possible with the logic programming efforts, to

model the key elements of regulations and answer

directed user queries. The major deontic logic efforts

include: LEGOL, a formal LEGally Orientated

Language for capturing obligations [45]; ON-LINE, an

ONtology-based Legal INformation Environment for

capturing and analyzing legal texts as legal knowledge

[47]; work establishing the legal importance of

monitoring permissions as well as obligations [11]; and

systems for automated extraction of normative

references from legal texts [9, 38].

Deontic logic approaches have not yet met users’

needs for working with regulations and ensuring

compliance. By extracting the rights and obligations,

deontic logic systems disambiguate regulations and

make them more palatable for system designers. Early

work established the utility of such an approach, but

the user was still required to manually encode the law

into the deontic operators for rights and obligations

[45, 47]. The ON-LINE system was able to deal with

only small sections of legislation at a time and the

usability of the ontology-based approach proved

problematic during usability testing [47]. More recent

efforts include automated extraction of normative

references, such as specific rights and obligations,

detailed in a legal text, and addressed the problem of

the law’s evolution by tracking changes over time [9,

38]. This provides for some degree of traceability, as

the system maintains information on each extracted

section including its type, number, date, section and

subpart headers, and the normative references [38].

However, these more recent projects were not

completed, and there are few examples to illustrate the

effectiveness of this approach. While these research

efforts established deontic logic as a worthwhile

approach to extract key information from regulations,

they did not result in usable tools for developers to

influence system design or monitor compliance.

A more recent deontic logic implementation

involves the explicit extraction and balancing of rights

and obligations from regulations [13]. The research

focuses on providing requirements monitoring and

compliance support for system developers and

maintainers [12]. Semantic parameterization entails

8

identifying the ambiguities within a legal text and

balancing the extracted rights and obligations [12].

This decomposition of regulations enables the user to

identify both explicit and implied rights and

obligations [12]; capturing these implied rights and

obligations is not addressed by the other deontic logic

approaches. The process, however, requires manual

extraction of the rights, obligations, delegations, and

constraints. Unlike most other approaches, Breaux and

Antón maintain traceability across all artifacts from the

HIPAA section and paragraph number to the

corresponding software requirements and access

control rules. This approach has been tested on only a

part of the HIPAA Privacy Rule; as such, its scalability

and applicability to other domains is not yet validated.

3.4. Defeasible Logic

Defeasible logic provides an alternative logic-based

approach to modeling regulations. Defeasible logic is a

form of non-monotonic skeptical reasoning, wherein

there are strict rules, defeasible rules, and defeaters.

Strict rules always hold, while defeasible rules hold

true unless an exception, or defeater, exists for the rule.

Given the existence of overlapping and conflicting

legal texts at different levels of government, defeasible

logic appears to be a natural fit for modeling

regulations [3]. The practical use of defeasible logic in

routine legal practice is emphasized as a key advantage

for system developers and users of regulations [21];

defeasible logic can aid in both decision support and

legal reasoning [4].

Proponents of defeasible reasoning have also noted

that deontic logic will not capture all eight fundamental

legal conceptions [20]: right, no-right, privilege, duty,

power, disability, immunity, and liability [18]. Hohfeld

presented these fundamental legal conceptions as the

basic elements needed to understand any legal relation,

noting specifically that ‘rights’ and ‘duties’

(obligations) were insufficient to address the

complexities in many areas of law [20].

Antoniou et al.’s approach has yielded an

operational implementation of a defeasible logic

system [3], but there remain several disadvantages to

such an approach for modeling regulations and

monitoring compliance. For example, numerous

features need to be added to any ‘pure’ defeasible logic

implementation (e.g. representing hierarchies,

arithmetic and temporal operators, and capturing

underlying legal knowledge) to model all the nuances

of the law [3]. The computational complexity of a

defeasible logic system is in dispute: early research

touted low complexity as a major advantage [4],

whereas more recent research indicated that

approximating a model was necessary due to concerns

about complexity [21]. Again, these efforts in

defeasible logic make no mention of maintaining

traceability and provide no examples of directly

modeling regulations. Given the lack of follow-up on

defeasible logic approaches, the viability of such

systems remains uncertain. There is currently no

system available to leverage defeasible reasoning in

requirements engineering and compliance monitoring.

3.5. First-Order Temporal Logic

Barth et al. proposed using first-order temporal

logic to extract key concepts –– context, roles, type of

information –– rather than precisely modeling the

regulation [5]. The approach, which is based on the

conceptualization of privacy using the contextual

integrity framework [36], captures only the privacy-

related elements of regulations such as parts of HIPAA

[5]. The use of formal logic is reminiscent of other

logic-based approaches, but the narrower focus on

privacy limits the applicability of this approach to

other regulations. Preliminary results show that the

contextual integrity framework captures most privacy

elements from the regulations tested to date; however,

Barth et al. do not disclose what percentage of privacy

elements originally present in the legal text were

extracted using their framework [5].

The research establishes the framework’s viability

in assessing compliance between privacy policies and

the privacy provisions of regulations. However, a

major limitation of this approach for the requirements

engineer is that Barth et al. make no mention of

maintaining traceability between the extracted concepts

and the original regulatory text. Although this

approach may be capable of aiding developers in

evaluating system requirements and design against

privacy regulations, its narrow framework does not

appear to extend to other legal texts. Unlike many of

the earlier research projects discussed in this section,

this framework may soon be available to other

researchers for validation and extension.

3.6. Access Control

Another approach to modeling regulations employs

access control techniques to capture the privacy-related

elements of legal texts. May et al. propose an

“auditable privacy system” that includes

conceptualizations for transfer, actions, creation, rights

establishment, notification, and logging [33].

Leveraging the similarity between legal privacy texts

and APIs in specifying rules on accessing protected

information, they derive privacy-focused mandatory

access control rules directly from regulations [33]. This

translation into access control rules captures regulatory

conditions and obligations as allow/deny operations.

Those conditions and obligations that cannot be

9

represented as access control rules are cast instead as

external environmental flags [33].

The auditable privacy system implementation

fulfills some key requirements engineering tasks, but

its narrow focus keeps it from adequately supporting

the complex needs of requirements engineers working

with legal texts. May et al. use a modeling language to

represent legal texts and privacy policies, thus enabling

model checking and verification operations. Such

formalism supports queries on the regulatory model, so

that developers and policymakers alike can analyze a

given text and evaluate compliance and design issues

[33]. However, their regulatory model abstracts away

many key aspects and characteristics of legal texts; for

example, the assumption that external and ambiguous

references are satisfied by default. In addition, the

model omits many low-level system requirements (e.g.

password procedures) specified by HIPAA [33]. The

narrow privacy focus, coupled with the inadequate

support for key elements of legal texts, makes this

approach unsatisfactory for requirements engineers

who need to extract requirements from legal texts and

monitor compliance.

3.7. Markup-Based Representations

Given the hierarchical nature of legal texts, some

researchers are attempting to capture regulations with

semi-structured markup languages, such as Standard

Generalized Markup Language (SGML) and

Extensible Markup Language (XML). Such markup-

based representations can mimic the structure of

regulations and also maintain annotations and other

metadata regarding each section, part, or even sentence

of the original legal text [24]. A markup-based

representation also enables the system to easily capture

and display information on definitions, acronyms, and

cross-references within the regulation(s), thereby

addressing several of the key requirements for using

legal texts during system development. A semi-

structured representation can be combined with well-

established information retrieval techniques and first-

order predicate logic to aid users in both locating and

analyzing relevant regulation sections [29]. In addition,

some newer legal texts are already being represented in

XML; augmenting these existing representations is a

relatively easy task [35]. Research efforts in this area

include: SGML modeling of decisions of the Supreme

Court of Canada [40]; REGNET, an XML framework

for representing regulations [24, 25, 28, 29, 30]; and an

overview of several XML models for representing

legal texts [35].

Markup-based representations hold promise for

providing requirements engineers with the necessary

framework for leveraging regulations in system

development. The work in SGML was an isolated

effort now superseded by research utilizing XML, a

simplified derivative of SGML that is easier to process.

The REGNET project, based on an XML framework,

has generated over 25 published papers describing the

system and its use in tasks such as: representing

regulations [24], providing similarity analysis between

different regulations [28], and helping policymakers in

drafting new regulations [30]. The REGNET project

includes a parser to automatically transform

regulations into XML and uses other tools to semi-

automatically generate conceptual tags for the markup

[24]. REGNET provides the foundation for verifying

compliance with a specific regulation, but has been

tested only in limited domains and the prototype

system is not yet available to other researchers. In

addition, in its current form REGNET does not provide

a precise model of the regulations [24].

Finally, the research evaluating several different

markup-based approaches does not provide details on

the underlying representations; instead it focuses on

techniques for ranking the different XML models

being reviewed [35]. Thus, while markup-based

approaches benefit from mimicking the hierarchical,

semi-structured nature of regulations, previous

research approaches do not offer developers any

available tools to shape requirements engineering and

design efforts around regulatory compliance. The

REGNET prototype system shows the most promise in

assisting with compliance efforts, but comparing and

drafting regulations, rather than extracting system

requirements, has become the main focus of this work.

3.8. Goal Modeling

The SecureTropos approach, based on the i*

framework, involves extracting and representing the

goals, soft goals, tasks, resources, and social

relationships for defining obligations [32]. It then uses

these concepts to model the relationships for actors,

dependencies, trust, delegation, and goal refinement

[32]. SecureTropos has been used to assess a

university’s compliance with the Italian Data

Protection Act [32]. Whereas the focus of the research

is on applying requirements engineering principles to

security requirements, the broader context examines

how an organization can assess its compliance with

standards from a particular regulation.

The SecureTropos approach requires a manual

extraction of the concepts. As with previously

discussed approaches, traceability is not addressed, and

we have yet to find any examples of the mapping

between the extracted concepts and their presence in

the original regulation. SecureTropos may enable

developers to better design systems to be compliant

with the fundamental concepts of a specific security

regulation, but its scalability and applicability to a

10

broader range of legal texts is as yet unproven. Finally,

SecureTropos does not currently provide users with the

ability to answer specific legal queries or identify

changes in the law over time.

3.9. Reusable Requirements Catalog

Toval et al. recently created a reusable catalog of

legal requirements that were derived from specific

legal texts regarding security and personal data

protection [46]. The Personal Data Protection (PDP)

Catalog enables requirements engineers to incorporate

legal requirements into the development lifecycle and

build compliance into new systems [46]. By providing

reusable legal requirements, analysts can more easily

uncover ambiguities and inconsistencies, and the

quality of the catalog increases with each usage [46].

This initial foray into applying requirements

engineering methodologies to legal requirements

provides some interesting insight, but does not satisfy

the comprehensive set of requirements engineering

needs that we address in this paper. For example, Toval

et al. highlight traceability as particularly important in

requirements engineering, yet they provide no evidence

of maintaining traceability between the derived

requirements and the source in the legal text, much less

the traceability required for all the cross-references to

other texts. Although their process appears to be a

manual effort, Toval et al. fail to mention the length of

the regulations they processed or how much time they

spent extracting requirements from the law. Thus, it is

difficult to properly evaluate the efficiency and

efficacy of their approach. In addition, a legal

requirements catalog requires updates each time the

law changes. Finally, the PDP Catalog does not

address the problem of overlapping or conflicting legal

texts; the ability to manage and resolve these conflicts

is an essential part of the requirements engineering

process for systems governed by laws and regulations.

4. Supporting RE in Legal Contexts

Given our experiences to date [2, 13, 19] and our

thorough survey of efforts to support the analysis of

legal texts discussed herein, we identify several key

elements for any system to support the analysis of

regulatory texts for requirements specification, system

design, and compliance monitoring.

Identification of Relevant Regulations

Our discussion in Section 1 focused on the need to

identify relevant regulations, extract the requirements

for a given system, and answer specific legal queries to

test for compliance. Identifying relevant regulations

may not appear to be a problem facing requirements

engineers, but our experience to date shows that it is a

key consideration during requirements elicitation.

Oftentimes, analysts discover additional relevant laws

or regulations only when they are midway through a

careful analysis of a particular legal text. Much as the

reader of this paper may see a citation and check the

list of references to locate and read that paper,

requirements engineers similarly identify external

regulations or laws that constrain the very law they are

examining at any given point in time. This is not a

trivial activity. The referenced regulation may have a

completely different set of definitions and terminology,

requiring further interpretation and careful analysis.

Making use of the supplemental documents to identify

similar and related regulations will also aid in

addressing the regulation identification problem.

Classification of Regulations with Metadata

Some classification of regulations is necessary for

developers and auditors to sort through the large

corpus of legal texts and identify those with relevance

to the project or system at hand. To this end, the idea

of tagging regulations with metadata, as proposed by

[24] and others, can lead to a categorization of

regulations over time. For example, a regulatory

section such as HIPAA §164.310 can be annotated as

generally describing security, or specifically detailing

physical safeguards; in another categorization, it could

be tagged as containing low-level system requirements.

With each new regulatory text tagged, the corpus

becomes more accessible and easily navigated.

Prioritization of Regulations and Exceptions

A system for handling regulations should address

the nature of legal texts in its underlying approach.

One key requirement is to handle the hierarchical

nature of regulations. Oftentimes exceptions take

precedence over the normative regulatory requirement.

To properly assist requirements engineering efforts

within this context, a support system should understand

and manage the relationships between overlapping or

contradictory regulations. This will enable analysts and

auditors to make determinations about which

regulations override others, depending on jurisdiction.

This becomes particularly important when considering

the effects of globalization. For example, various

nations’ regulations on personal data protection may

differ or contradict one another; thus, users need

mechanisms for resolving those situations. In addition,

it is important to accommodate case law as well as

other guiding documents. This information can again

be captured as metadata; sections further explained or

disambiguated by supplemental texts can be annotated

with the more detailed information.

Management of Evolving Regulations and Law

It is critical for requirements engineers and

compliance auditors to be able to manage the evolution

of regulations over time. Given the frequent revisions

to legal texts as previously discussed, requirements

11

engineers need to be able to capture these changes and

maintain an up-to-date view of the relevant regulations

requiring analysis at any given time. It may be

necessary to compare changes, and understand the

impact of their scope, at distinct time periods to

understand how requirements have evolved and how

compliance efforts are impacted by modifications in

the law. Thus the system must not only maintain

traceability between regulations and requirements, but

must also track the point in time at which that link was

established. For legal analysis and the future

development of case law, such metadata may be

critical for verifying compliance. Analysts may be

forced to update requirements or concepts as

regulations change, and therefore they will require

methods for tracking the status of development efforts

vis-à-vis the changes in legal texts over time.

Traceability Between References and Requirements

As previously discussed, traceability support for

both external and internal references is critical to

ensure requirements engineers are able to accurately

capture the full meaning of any given regulatory text.

In Section 2 we discussed the prevalence of cross-

references within regulations; external references also

occur frequently in legal texts. Thus, it is imperative to

maintain traceability between any section with a

reference and the legal text being referenced. This is

especially important given that external references

often establish legally binding priorities among

requirements and allowable information accesses, uses,

disclosures, and removals. Navigating across these

references, as well as from specific regulatory

statements to the derived requirements, will improve

analysts’ understanding of the legal text and is

essential for gathering all requirements and concepts

expressed by a particular piece of regulation.

Data Dictionary and Glossary to Ensure Consistency

The use of consistent definitions and terminology is

important in the design of any software system, and of

paramount importance in the context of regulatory

compliance. A data dictionary for all domain-specific

definitions and acronyms is needed to support

requirements engineers, policymakers, and auditors in

establishing a unified glossary for the system

specification, design documents, and compliance audit

artifacts. In dealing with regulations, requirements

engineers will frequently encounter unfamiliar and

complex terms, making a thorough glossary even more

important [16]. Given that multiple regulations may

share similar words with different interpretations, users

must be able to view any word’s definition given the

context of a specific regulation. These definitions

should then be referenced in the creation of a system-

wide glossary; once again traceability between the

original legal terms and the system glossary must be

maintained.

Semi-automated Navigation and Searching

Analysts need to be able to access regulations in a

machine- and human-readable state. Previous

requirements engineering research emphasized the

relevance of such access in highly-regulated domains

such as health care [16]. Some tasks, such as extracting

concepts and adding metadata, need to be supported by

semi-automated processes; use of semi-automated

annotation tools is an active research topic (e.g. Semio

Tagger [24] and CERNO [27]). In addition, users must

be able to view the original regulatory text at any time,

and traceability needs to be maintained between any

machine-readable or logic-based format and the

original natural language representation. Analysts must

be able to easily search and navigate regulatory texts

with varying levels of granularity. Given the

complexity of regulations, users may need to search for

specific terms, for more general concepts, or even scan

entire sections of legal texts to clarify their

understanding or support requirements engineering

efforts.

Annotation of Regulatory Statements

As discussed in Section 2, legal and regulatory texts

are laden with ambiguities. Some ambiguities in the

law may be intentional, but analysts still need to

establish an interpretation of the law in these cases, as

well as maintain traceability with the section being

interpreted. Analysts must be able to attach auxiliary

annotations to ambiguous sections to flag them for

further analysis in collaboration with the proper

stakeholders, such as the organization’s legal counsel.

Ideally, analysts should be able to track interpretations

across legal texts such that users will be able to view

all assumptions upfront and differentiate the

interpretations according to the context and conditions

associated with any given situation. The ability to link

legislation and software requirements with

supplemental documentation will aid analysts by

providing them with additional support for

disambiguating texts for requirements extraction.

Queries Comparing Legal Concepts and Compliance

As supported by a wide range of approaches [1, 7,

10, 33, 34, 42, 43, 44], it should be possible to perform

directed queries on the regulatory model. These queries

enable analysts to support disambiguation and auditing

efforts. Specific legal queries can allow analysts and

auditors to identify all applicable regulations, discover

all uses of a particular term or concept, and compare

different regulations. Auditors may also wish to query

the system to determine whether a particular regulation

has been addressed in a system’s design, or whether

any requirements correspond to a given section.

12

5. Discussion and Future Work

We now outline some limitations in this survey’s

analysis and discuss future work toward a system for

managing regulations.

This survey has largely focused on work within the

computer science and artificial intelligence domains. It

is possible that there has been work with regulations in

other engineering domains that can be applied to the

tasks facing requirements engineers and auditors in

devising a system for using regulations. It would also

be useful to examine how system developers are

currently handling legal texts. Empirical studies of

specific organizations would likely reveal additional

requirements in dealing with regulations. One such

study could focus on a particular domain and examine

how requirements engineers and system developers

identify and handle relevant regulations. Another study

could focus on a particular regulation to pinpoint what

elements of a legal text are used and how the

regulation is managed in terms of the project.

Other concepts studied in requirements engineering

are likely to be relevant for systems managing

regulations. Future work should consider how

requirements engineering research on viewpoints and

frameworks can be applied to regulatory compliance

systems. Research into natural language processing

may also provide insight into parsing legal texts.

We are currently examining how to mine legal texts

to create hierarchies of stakeholders, data objects, and

events. We are also conducting an empirical study of a

requirements specification to check for compliance.

Our study begins with the previously-derived

requirements and is working back to establish

traceability with regulatory texts. We expect to

uncover additional issues in monitoring compliance by

working backwards from requirements specifications

to the regulatory text and anticipate discovering

additional requirements for our regulatory system.

6. Conclusion

This paper discusses the role of law in requirements

engineering and attempts to bring attention to this

important domain within the requirements engineering

community. The characteristics of regulations make

them both necessary and challenging to use during

system development. Our survey examines the past 50

years of work in modeling regulations, extracting key

concepts from regulatory texts, and monitoring

compliance. In addition, we discuss what is required to

effectively support analysts that must deal with

regulatory texts in specifying system requirements as

well as auditors in determining legal compliance.

7. Acknowledgements

This work was funded by NSF ITR-Cybertrust grant

#0430166. We thank Travis Breaux, Laurie Jones, and

Aaron Massey for their comments and feedback.

8. References

[1] L.E. Allen. "Symbolic Logic: A Razor-Edged Tool

for Drafting and Interpreting Legal Documents," Yale

Law Journal 66(6), pp. 833-879, May 1957.

[2] A.I. Antón et al. "The Role of Policy and Stakeholder

Privacy Values in Requirements Engineering," Proc.

of the 5th IEEE Int'l Symp. on Req'ts Eng., pp. 138-

145, August 2001.

[3] G. Antoniou et al. "On the Modelling and Analysis of

Regulations," Proc. of the 10th Australasian Conf. on

Info. Sys., pp. 20-29, December 1999.

[4] G. Antoniou, D. Billington, M.J. Maher. "On the

Analysis of Regulations using Defeasible Rules,"

Proc. of the 32nd Hawaii Int’l Conf. on Sys. Sci., pp.

1-7, January 1999.

[5] A. Barth et al. "Privacy and Contextual Integrity:

Framework and Applications," Proc. of the 2006

IEEE Symp. on Security and Privacy, May 2006.

[6] T.J.M. Bench-Capon. "Support for Policy Makers:

Formulating Legislation with the Aid of Logical

Models," Proc. of the 1st Int'l Conf. on AI and Law,

pp. 181-189, May 1987.

[7] T.J.M. Bench-Capon et al. "Logic Programming for

Large Scale Applications in Law: A Formalisation of

Supplementary Benefit Legislation," Proc. of the 1st

Int'l Conf. on AI and Law, pp. 190-198, May 1987.

[8] D.M. Berry, E. Kamsties, M.M. Krieger. “From

Contract Drafting to Software Specification:

Linguistic Sources of Ambiguity,” Univ. of Waterloo

Technical Report, November 2003.

[9] C. Biagioli et al. "Automatic Semantics Extraction in

Law Documents," Proc. of the 10th Int'l Conf. on AI

and Law, pp. 133-140, June 2005.

[10] C. Biagioli, P. Mariani, D. Tiscornia. "ESPLEX: A

Rule and Conceptual Based Model for Representing

Statutes," Proc. of the 1st Int'l Conf. on AI and Law,

pp. 240-251, May 1987.

[11] G. Boella, L. van der Torre. "Permissions and

Obligations in Hierarchical Normative Systems,"

Proc. of the 9th Int'l Conf. on AI and Law, pp. 109-

118, May 2003.

[12] T.D. Breaux, A.I. Antón. "An Algorithm to Generate

Compliance Monitors from Regulations," Technical

Report TR-2006-9, March 2006.

[13] T.D. Breaux, M.W. Vail, A.I. Antón. "Towards

Regulatory Compliance: Extracting Rights and

Obligations to Align Requirements with

Regulations," Proc. of the 13th IEEE Int'l Conf. on

Req'ts Eng., September 2006.

[14] M. Casassa Mont, R. Thyne, P. Bramhall. "Privacy

Enforcement with HP Select Access for Regulatory

Compliance," Technical Report HPL-2005-10,

January 2005.

[15] F. Chantree et al. “Identifying Nocuous Ambiguities

in Natural Language Requirements,” Proc. of the

13

IEEE Int’l Req’ts Eng. Conf., pp. 56-65, September

2006.

[16] L.M. Cysneiros. “Requirements Engineering in the

Health Care Domain,” Proc. Of the IEEE Joint Int’l

Conf. on Req’ts Eng., pp. 350-356, September 2002.

[17] Ernst & Young. “2006 Global Information Security

Survey,” November 2006.

[18] G. Governatori, A. Rotolo, G. Sartor. "Temporalised

Normative Positions in Defeasible Logic," Proc. of

the 10th Int'l Conf. on AI and Law, pp. 25-34, June

2005.

[19] Q. He et al. “Ensuring Compliance Between Policies,

Requirements and Software Design,” Proc. of the 4th

IEEE Int’l Workshop on Info. Assurance, April 2006.

[20] W.N. Hohfeld. “Some Fundamental Legal

Conceptions as Applied in Judicial Reasoning,” Yale

Law Journal 23(1), pp. 16-59, November 1913.

[21] B. Johnston, G. Governatori. "Induction of Defeasible

Logic Theories in the Legal Domain," Proc. of the 9th

Int'l Conf. on AI and Law, pp. 204-213, June 2003.

 [22] E. Kamsties. “Surfacing Ambiguity in Natural

Language Requirements.” Ph.D. Dissertation,

University of Kaiserslautern, Germany, 2001.

[23] E. Kamsties, D. M. Berry, B. Paech. “Detecting

Ambiguities in Requirements Documents Using

Inspections,” Proc. of the 1st Workshop on Inspection

in Software Eng., pp. 68-80, June 2001.

[24] S. Kerrigan, K.H. Law. "Logic-Based Regulation

Compliance-Assistance," Proc. of the 9th Int'l Conf.

on AI and Law, pp. 126-135, June 2003.

[25] S. Kerrigan et al. "Information Infrastructure for

Regulation Management and Compliance Checking,"

Proc. of the Nat’l Conf. on Digital Gov’t Research,

pp. 167-170, February 2001.

[26] B. Kitchenham. “Procedures for Performing

Systematic Reviews,” NICTA Technical Report

0400011T.1, July 2004.

[27] N. Kiyavitskaya et al. “Annotating Accommodation

Advertisements using CERNO,” Proc. of the 14th

ENTER Conf., January 2007.

[28] G.T. Lau, K.H. Law, G. Wiederhold. "Similarity

Analysis on Government Regulations," Proc. of the

9th ACM SIGKDD Int'l Conf. on Knowledge

Discovery and Data Mining, pp. 111-117, August

2003.

[29] G.T. Lau et al. "An E-Government Information

Architecture for Regulation Analysis and Compliance

Assistance," Proc. of the 6th Int'l Conf. on Elec.

Comm., pp. 461-470, October 2004.

[30] G.T. Lau, K.H. Law, G. Wiederhold. "Legal

Information Retrieval and Application to E-

Rulemaking," Proc. of the 10th Int'l Conf. on AI and

Law, pp. 146-154, June 2005.

[31] J. Martinek, J. Cybulka. "Dynamics of Legal

Provisions and its Representation," Proc. of the 10th

Int'l Conf. on AI and Law, pp. 20-24, June 2005.

[32] F. Massacci, M. Prest, N. Zannone. "Using a Security

Requirements Engineering Methodology in Practice:

The compliance with the Italian Data Protection

Legislation," Technical Report DIT-04-103, 2004.

[33] M.J. May, C.A. Gunter, I. Lee. “Privacy APIs:

Access Control Techniques to Analyze and Verify

Legal Privacy Policies,” Proc. of the 19th Computer

Security Foundations Workshop, July 2006.

[34] L.T. McCarty. "The TAXMAN Project: Towards a

Cognitive Theory of Legal Argument," Computer

Science and Law, B. Niblett Ed., Cambridge Press:

New York, pp. 23-43, June 1980.

[35] M.-F. Moens. "Combining Structured and

Unstructured Information in a Retrieval Model for

Accessing Legislation," Proc. of the 10th Int'l Conf.

on AI and Law, pp. 141-145, June 2005.

[36] H. Nissenbaum. "Privacy as Contextual Integrity,"

Washington Law Review 79(1), pp. 119-157,

February 2004.

[37] P.N. Otto, A.I. Antón, D.L. Baumer. "The

ChoicePoint Dilemma: How Data Brokers Should

Handle the Privacy of Personal Information,"

Technical Report TR-2006-18, July 2006.

[38] M. Palmirani, R. Brighi, M. Massini. "Automated

Extraction of Normative References in Legal Texts,"

Proc. of the 9th Int'l Conf. on AI and Law, pp. 105-

106, June 2003.

[39] N. Peek. “Representing Law in Partial Information

Structures,” Artificial Intelligence and Law 5(4), pp.

263-290, December 1997.

[40] D. Poulin, G. Huard, A. Lavoie. "The Other

Formalization of Law: SGML Modelling and

Tagging," Proc. of the 6th Int'l Conf. on AI and Law,

pp. 82-88, June 1997.

[41] W.N. Robinson. "Implementing Rule-Based Monitors

within a Framework for Continuous Requirements

Monitoring," Proc. of the 38th Hawaii Int’l Conf. on

Sys Sci., January 2005.

[42] M.J. Sergot, A.S. Kamble, K.K. Bajaj. "Indian

Central Civil Service Pension Rules: A Case Study in

Logic Programming Applied to Regulations," Proc.

of the 3rd Int'l Conf. on AI and Law, pp. 118-127,

June 1991.

[43] M.J. Sergot et al. "The British Nationality Act as a

Logic Program," Comm. of the ACM 29(5), pp. 370-

386, February 1986.

[44] D.M. Sherman. "A Prolog Model of the Income Tax

Act of Canada," Proc. of the 1st Int'l Conf. on AI and

Law, pp. 127-136, May 1987.

[45] R. Stamper. "LEGOL: Modelling Legal Rules by

Computer," Computer Science and Law, B. Niblett

Ed., Cambridge Press: New York, pp. 45-71, June

1980.

[46] A. Toval, A. Olmos, M. Piattini. “Legal

Requirements Reuse: A Critical Success Factor for

Requirements Quality and Personal Data Protection,”

Proc. Of the IEEE Joint Int’l Conf. on Req’ts Eng.,

pp. 95-103, September 2002.

[47] A. Valente, J. Breuker. "ON-LINE: An Architecture

for Modelling Legal Information," Proc. of the 5th

Int'l Conf. on AI and Law, pp. 307-315, May 1995.

14

