
A Web-Based Requirements Analysis Tool

Annie I. Ant�on

Eugene Liang

Roy A. Rodenstein

fanton,eugene,royrod@cc.gatech.edug
College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

Abstract

The Goal Based Requirements Analysis Tool
(GBRAT) is designed to support goal-based require-
ments analysis. The tool provides procedural support
for the identi�cation, elaboration, re�nement and or-
ganization of goals to specify the requirements for soft-
ware based information systems. GBRAT employs in-
teractive Web browser technology to support the col-
laborative nature of requirements engineering.

1 Introduction

The World-Wide-Web (WWW) has emerged in re-
cent years as a standard medium to display informa-
tion. The ability to support the collaborative nature
of requirements engineering using interactive WWW
technologies led us to develop our Web-based Goal-
Based Requirements Analysis Tool (GBRAT). Using
GBRAT, project members can work collaboratively to
specify goals for software systems. The speci�ed goals
can be viewed and modi�ed by other project members
located anywhere around the world.

This paper discusses some aspects of GBRAT in
the context of its use in a real study involving the
speci�cation of requirements for Web-based applica-
tions. The tool is useful to identify, elaborate and
organize goals for requirements speci�cation. Section
2 provides a brief overview of our previous work. An
overview of the tool and its use on a real study are
provided in Section 3. A summary and conclusions
are discussed in Section 4.

2 Previous Work

In a previous paper [1] we cite the need for strate-
gies for the initial identi�cation and construction of
goals. We discussed goals from the perspective of two
themes: goal analysis and goal evolution. That paper
provides an overview of our Goal-Based Requirements

Analysis Method (GBRAM) and summarizes our ex-
periences in applying the method to a relatively large
example. Our experiences with scenario analysis [4]
demonstrated that scenarios are useful for uncovering
and elaborating requirements, and for answering ques-
tions that are not easily answered using other tech-
niques. These studies prompted us to further develop
and validate our strategies to identify and construct
goals. We are currently prototyping GBRAT to sup-
port the process of identifying and capturing goals,
responsible agents, stakeholders, constraints, goal ob-
stacles and scenarios as well as for specifying relation-
ships between goals and subgoals. We are applying the
method (GBRAM) and tool (GBRAT) to electronic
commerce applications as we discuss in this paper.

Goal Analysis

Goals are high level objectives of the business, orga-
nization or desired system. They are a logical mech-
anism for identifying, organizing and justifying soft-
ware requirements [1]. Using the Goal-Based Require-
ments Analysis Method [1], we identi�ed the func-
tional modules for GBRAT and determined the func-
tional requirements by operationalizing the goals (Op-
erationalization is the process of de�ning a goal with
enough detail so that its subgoals have an operational
or functional de�nition). The result of this analysis is
best observed in the GBRAT prototype.

Current goal-based methods do not provide ana-
lysts with su�cient strategies for knowing how to ini-
tially identify goals or how to extract goals from the
available information sources. Furthermore, tool sup-
port is lacking to support these methods. The objec-
tive of the underlying research is to develop a catalog
of heuristics and questions to guide analysts as they
identify and specify system and enterprise goals. The
objective of GBRAT is to provide analysts with the
procedural support they need to be able to analyze
and re�ne goals. GBRAT will support and guide an-
alysts as they identify, capture and structure require-



ments information in the form of goals.

3 GBRAT

GBRAT supports goal-based requirements analy-
sis. The tool serves as a medium for project team
members, working from di�erent locations, to partici-
pate in the decision-making processes which permeate
requirements engineering. Team members are able to
work collaboratively on new ideas, discuss issues, and
make decisions about system goals despite their geo-
graphic and time di�erences.

3.1 Users
The typical GBRAT user is an experienced require-

ments engineer with a considerable working under-
standing of the goal-based method, the WWW and
Web-based applications. We assume that GBRAT
users will work from existing diagrams, textual state-
ments of need and/or additional sources of informa-
tion, such as transcripts of interviews with stakehold-
ers to identify and specify the goals of the desired sys-
tem. After the analyst/elicitor has gathered all avail-
able information about the desired system he or she
can then extract goals from these information sources
and specify them using GBRAT as described below.

3.2 System Features
GBRAT features enable users to create project

repositories and, specify goals, view goals from several
perspectives and order goals. The examples provided
in this paper to illustrate these features are part of an
ongoing requirements reengineering of a Web server
that supports various consortium member organiza-
tions participating in electronic commerce. The Web
server must support secure payment and transactions,
di�erent access levels, membership and seminar regis-
trations, as well as project and proposal status track-
ing. Several examples from this study are employed
to demonstrate how GBRAT enables us to easily iden-
tify synonymous goals and manage traceability via the
Web. Although, we are currently using GBRAT to es-
tablish the requirements for Web-based applications,
its use is certainly not limited to this kind of system.
It can be used for a more general range of information
systems involving multiple stakeholders.

The method (GBRAM), though not the tool
(GBRAT), has been used on a range of problems, in-
cluding a business process reenginering project for an
Air Force Base [1] and the requirements speci�cation
for GBRAT [2] [3].

Project Repositories

Goals concerning a given system are stored in a
project repository. Each project repository has a spec-
i�ed project name and description as well as the name

of the analysts working on a given project. From
within a speci�c project repository, we can create new
goals or view the previously speci�ed goals using three
�lters: the maintenance and achievement goal �lter,
the agent �lter, and the total order �lter. The fol-
lowing sections discuss how goals are created and how
the ability to view the speci�ed goals via the di�erent
available �lters is helpful to analysts.

Figure 1: Project Repositories

Creating Goals

Goal creation requires users to complete a form, as
shown in Figure 2, to specify the goal name, classi-
�cation and responsible agent(s). Users must specify
a goal name, such as, \AVOID duplicate purchase"
as shown in Figure 2. Goals are named in a stan-
dardized subset of natural language in which the �rst
word is a verb that describes the kind of goal being
named. For example, AVOID denotes one kind of goal.
Goals of this kind are satis�ed for as long as their
target conditions remain false. Each goal is classi�ed
either as an achievement or as a maintenance goal.
Achievement goals are objectives of the system and
are named by the verbs MAKE and KNOW. For example,
a seminar registration system may need to satisfy the
goal of enrolling consortium members in the seminar
before the actual seminar begins. The object of the
goal is seminar registration and so the goal would be
named MAKE member registered. Maintenance goals
are those goals that are satis�ed while their target con-
dition remains true and are therefore named using the
verbs MAINTAIN, KEEP, AVOID and ENSURE. They tend
to be operationalized as actions that prevent certain
states from being reached. The goals in Table 1 are
examples of maintenance goals.



Figure 2: GBRAT Form to Create Goals

Goal Classi�cation Agent

ENSURE secure transaction Maintenance Server

ENSURE information updates managed Maintenance Server

Table 1: Maintenance Goal Example

Goal Traceability

Hypertext links enable traceability to take various
forms in GBRAT. When a user creates a new goal, the
user must specify the name of the information source
from which each goal was identi�ed. In Figure 2, the
source is an emailmessage fromKenji Takahashi dated
9 Feb This ensures that each goal can be traced back
to its place (i.e. document) of origin. It also enables
analysts to easily identify goals which may have been
extracted from more than one information source so
that any similarities and di�erences can be immedi-
ately reconciled. Goals may also be traced back to the
responsible agents. Further enhancements to GBRAT
will include traceability among obstacles and scenar-
ios as well as pre-conditions and post-conditions.

Viewing Goals by Name

Goals may be viewed by various �lters in GBRAT.
When viewed by name, the goals are listed alphabet-
ically and displayed in a tabular format, as shown in
Figure 3. GBRAT allows users to view either achieve-
ment or maintenance goals by name. The goals in
Figure 3 are achievement goals. By clicking on the

bullet (labeled M) in the left hand column, users can
modify the selected goal. The second column (la-
beled C) noti�es the users of the existence of any
constraints on each goal. A constraint places a condi-
tion on the achievement of a goal. For example, in
Figure 2, Member must be able to ascertain if

product was previously purchased places a condi-
tion on the achievement of the goal AVOID duplicate

purchase. In the third column (labeled Name) the
user can select a goal by name in order to view all the
properties of the goal (This view is shown in Figure ??
and discussed in more detail below). The next three
columns list the agents responsible for each goal, the
goal obstacles and scenarios (respectively). Goal ob-
stacles are behaviors that prevent or block the achieve-
ment of a given goal. Scenarios are behavioral descrip-
tions of a system and its environment. The bullets in
the far right column (labeledD) allows users to delete
goals.

Figure 3: Viewing Goals by Name

Viewing Goals by Agent

Many times analysts need the ability to look at all
of the goals for which a particular agent is responsi-
ble. For each agent, the relevant goals he or she is
responsible for are displayed in the same format as
described above. However, a di�erent table is created
for each agent. For example, Figure 4 shows a few of
the achievement goals which a consortium member is
responsible for in the electronic commerce web-server
system. More than one agent can be associated with
a goal. Our experience with GBRAT has shown that
when the same goal is identi�ed from two di�erent
sources, the only di�erence between the two goals is
often the responsible agents. GBRAT noti�es the user
when this occurs and allows the user to merge the two
goals into one goal with multiple responsible agents.



Figure 4: Viewing Goals by Agent

Viewing Goals by Precedence Relation

All achievement goals are related in some way to the
other goals in the system. A precedence relation exists
between goals G1 and G2, when goal G1 must be com-
pleted before goal G2. Our main interest in organizing
achievement goals according to their precedence rela-
tions is to enable analysts to envisage goal operational-
izations and re�nements. GBRAT enables users to
specify precedence relations among achievement goals
so that a total ordering can be produced for the sys-
tem goals. Once the user has speci�ed the precedence
relations, GBRAT assigns a number to each goal and
displays the goals according to that ordering. Fig-
ure 5 shows the ordering produced by GBRAT for
goals based on the ordering speci�ed by the user. This
view of the goals is helpful. The easy identi�cation of
synonymous goals in clusters facilitates an analyst's
ability to recognize those goals which need to be rec-
onciled, merged or elaborated.

Viewing a Goal's Properties

Goals have 7 properties, as shown in Figure ??. A
link is provided from each goal in a table to the goal
record itself. Figure shows this view for the goal AVOID

Figure 5: Viewing Goals by Precedence Relation

duplicate purchases it includes, for each goal, its
name, responsible agent(s), constraints, obstacles, sce-
narios, as well as any pre- and post-conditions.

Implementation

Having described what GBRAT does, we now de-
scribe how it is implemented. The WWW provides
a consistent user interface and the ability to incorpo-
rate a wide range of technologies and document types.
Web browsers allow multiple users in di�erent physi-
cal locations to access information via the Web. These
characteristics played a role in the decision to develop
GBRAT as a Web-based application. GBRAT allows
analysts working in di�erent locations to easily ac-
cess the same documents. Netscape o�ers a consistent
interface across di�erent platforms and nonstandard
HTML tags. It has built in security capabilities that
enable us to limit access to registered GBRAT users.
GBRAT is compliant with Web browsers; the capabil-
ity to establish clearly visible links from one document
to another as well as within documents is supported
via hypertext links.

The cacheing capability of WWWbrowsers requires
repeated reloading of modi�ed pages. However, by
using PERL scripts to retrieve information from the
goal database, pages are dynamically generated and
the user is assured that all information displayed is
always up-to-date. Goals and goal properties are en-
tered in natural language fragments. GBRAT easily
manipulates and scans large amounts of text as ev-
idenced by the ability to display goals via di�erent
�lters as shown in Figures 2, 3, 4 and 5.

Viewing Goal Hierarchy Relationships

Drag-and-drop seemed the most intuitive way to
build a visualization of the relationships among goals.



Figure 6: Goal Hierarchy

In order to show these relationships, an n-ary tree
structure can be constructed, with the root being the
name of the project (repository) and any number of
children at each level in the tree. This allows for show-
ing that a particular goal is a subgoal of another, and
must be completed as a prerequisite of its parent. The
goal list, at right, includes an item labelled 'OR' so
that OR relationships among goals may be created-
this goal depends on 'goal A' OR 'goal B' being com-
pleted. By default, an AND relationship is assumed
for subgoals, so hierarchies that re
ect more complex
requirements may be built using these AND and OR
relationships.

In order to make the visualization as malleable as
possible, to simplify its use and be forgiving of mis-
takes, it was necessary to allow the dragging not only
of goals onto the tree but also leaves and entire sub-
trees. This allows repositioning of the goals to re
ect
changes in the project's structure or subtasks.

Feedback is provided to the user in several ways.
First, naturally, the goal is displayed as it is dragged,
so that the user can tell they are taking the action
of adding a goal to the hierarchy. Second, the goal
is highlighted while it is over an area where it can
be dropped, which helps the user ascertain that they
are adding the new goal exactly where they want to.
Further, the name of the goal the the user is over (i.e.
the goal that the user would add a subgoal to, where
(s)he to release the drop at that point) is displayed
in the status bar at the bottom of the screen. After
a particular goal has been inserted into the hierarchy,

it is highlighted in the goal list at right, so that the
user will know that goal has been used at least once.
Lastly, when the user is not dragging a goal over a
subtree, the status bar displays the name of the last
goal that the user added a subgoal to, so that if the
hierarchy becomes large and/or dense the user will not
lose h(is)(er) place.

Each subtree in the hierarchy can be collapsed to
save space, as well as to abstract away its subgoals.
An arrow appears to the left of each subtree, i.e. leaf
nodes do not display an arrow, as they have no chil-
dren. The arrow changes orientation depending on the
state of the subtree- when it is open and showing its
subgoals the arrow points down; when it is closed, the
arrow points to the right. The arrow is also the place
the user should click in order to open and close the
hierarchy.

By dragging the label for a subtree or leaf, the user
can reposition it. A subtle drop shadow is provided
in these cases, as feedback that the structure is out of
the tree and being dragged. This feedback also occurs
in the tree, as it redisplays itself to show the hierarchy
without the goal being dragged.

If a goal from the goal list at right is dropped on
an invalid area, such as empty space or the trash area,
it simply goes away (though the original remains in
the list so that it can be used again; this is because
certain goals, such as 'training,' may be needed more
than once. Ideally, though, a separate goal would be
created for each situation, to preserve the speci�city
of requirements). If a subtree or leaf from the tree is
dropped in the trash area, it also goes away, in e�ect
removing it from the hierarchy. As before, the goals
remain in the goal list at right so that they may be
used again. If a subtree or leaf is dropped onto empty
space, it returns to the level it was originall dragged
out of, but is inserted as the �rst child on that level.
If a subtree or leaf is dropped onto the same parent
it was dragged o� of, it is inserted as the last child at
that level. These two positioning features allow goals
to be arranged in a particular order within subtrees,
to show the order that subgoals need to be completed
in, for example.

The tree exists within a Panner object that turns
scrollbars on and o� as appropriate, so that the user
may scroll to any section of the tree if the latter grows
large. This feature, along with collapsibility, allow for
e�ective use of limited space.

4 Summary and Conclusions

Goal-oriented methods are attracting research in-
terest, but there exists little work in the form of tool
support for these methods. GBRAT supports the col-
laborative nature of requirements engineering using in-
teractive WWW technologies and allows project mem-
bers located anywhere around the world to work col-



laboratively. Ultimately, GBRAT will support the two
stages of our goal-based approach (GBRAM) [1]:

1. Goal Analysis: The process of exploring gathered
information and then identifying, classifying and
organizing goals.

2. Goal Re�nement and Decomposition: The pro-
cess of re�ning the classi�ed goals and decompos-
ing them into functional requirements.

GBRAT currently provides a mechanism for ana-
lysts to capture, classify and organize goal informa-
tion. The ability to specify goal hierarchies o�ers an
initial approach to goal re�nement. Future work will
further support the goal re�nement and decomposition
process. GBRAM calls for the ability to assign prece-
dence relations to each goal in order to organize the
goals accordingly. In its current state, the tool allows
users to reorder goals based on their precedence rela-
tions resulting in a total ordering of the speci�ed goals.
Future extensions will enable users to re�ne goals by
specifying subgoals with precedence relations assigned
to each goal's subgoals. The use of Web technology
for collaborative requirements engineering is still in
its infancy. GBRAT is o�ers some minimal support
for de�ning and specifying goal repositories. By em-
ploying the tool in our work on electronic commerce
applications we are seeking to answer how goals are
used to identify and re�ne system requirements and
how the method's strategies are used in reengineering
e�orts involving a team of analysts.

Problems
The use of the WWW introduces problems linked to

cooperation, information sharing, di�erent viewpoints
and networked enterprises.

Acknowledgements

The authors would like to thank NTT for support-
ing this research, Dr. Peter Freeman who directed the
development of GBRAT, as well as, Colin Potts, Kenji
Takahashi, Je� Smith and Erik Bataller.

References

[1] Ant�on, A.I., \Goal-Based Requirements Analysis,"
2nd IEEE International Conference on Require-
ments Engineering (ICRE `96), Colorado Springs,
Colorado, 15-18 April 1996, pp. 136-144.

[2] Ant�on, A.I., \Goal-Based Requirements Anal-
ysis Tool (GBRAT): Requirements Document,"
Version 0.3, Georgia Institute of Technology
Web Page, http://www.cc.gatech.edu/ comput-
ing/ SW Eng/ Project/ reqts doc.html, 14 Novem-
ber 1995.

[3] Liang, E, \Goal-Based Requirements Analy-
sis Tool (GBRAT): Design Document," Ver-
sion 0.3, Georgia Institute of Technology Web
Page, http:// www.cc.gatech.edu/ computing/
SW Eng/ Project/ design doc.html, 14 November
1995.

[4] Potts, C., K. Takahashi and A.I. Ant�on, \Inquiry-
Based Requirements Analysis," IEEE Software,
11(2), pp. 21-32, March 1994.


