CHAPTER 1

Introduction

If you don’t understand the user’s requirements, it doesn’t matter how you code it.

Ed Yourdon

The core of this research is aimed at improving the early stages of the software de-
velopment process in complex environments. The early planning and analysis stages have
been recognized by many observers as critical, yet there have been few substantial advances
in this arena. The primary focus of this work is the transformation of enterprise and sys-
tems goals into requirements, with the objective of formulating a method that is useful for
identifying and refining the goals that systems must achieve and subsequently converting
them into operational requirements. Specifically, the method detailed in this thesis provides
procedural support for the early identification and elaboration of goals in the specification
of software-based information systems. The objective of this chapter is to establish the

context for this research.

1.1 Requirements Engineering

Requirements describe the desired functionality of a system. In general, there are two

types of requirements: functional and nonfunctional. Functional requirements describe the



behavioral aspects of a system; non-functional requirements describe the non-behavioral
aspects of a system.

Requirements analysis is the process by which the purpose and functionality of a
system is elicited and modeled [53]. Requirements analysis and specification is one of the
most challenging and error-prone activities in the software process. One reason for this is
the high level of communication-intensive activity required. Stakeholders frequently lack a
clear understanding of what the desired system should do and often tend to change their
minds regarding the functionality that the system must exhibit. It is important to identify
the issues that lead to instability early in the formulation of software requirements. To
clearly identify these issues, stakeholders and analysts must communicate and negotiate the
terms for any proposed system. Requirements are useful for such communication, serving
as a contractual language understood by both parties.

Requirements engineering is plagued by practical problems such as complexity, volatil-
ity, ambiguity, the need to rely on intuition, and disagreements among stakeholders. The
discussion of these practical issues sets the stage for the principles and methods presented

in this thesis.

Complexity

Obtaining requirements is conceptually complex. It demands grasping a set of nebulous
ideas that may be incomplete or in conflict, and transforming that set of ideas into a com-
plete and consistent elaboration of the technical requirements for a software system. These

technical requirements must be easily comprehensible to the intended customer or stake-



holders. Projects often fail to fulfill stakeholders’ goals, however, because the requirements
are inadequately explored and described. Analysts usually work from a vague statement
of needs or goals. Additionally, each stakeholder has different requirements and priorities
which sometimes conflict with the goals of the group as a whole. As a result, requirements
are often not representative of the enterprise goals and/or conflict with them. Often the

strategies for conflict identification and resolution are inadequate.

Volatility

Requirements creep is defined as the evolution in requirements between the time at
which actual coding begins and the time of product delivery [54], with direct reference to
changing and adding requirements. Requirements churn refers to the frequent modifica-
tion of the same requirements or their priorities. The volatility of requirements, especially
after the requirements “phase,” is the source of one of the greatest problems in software
development.

Capers Jones observes that “Creeping user requirements will grow at an average rate
of 1% per month over the entire development schedule” [49]. For a two year project,
this translates into an increase in functionality of 24% or 36% for a three year project.
Requirements creep is a significant source of cost and time overruns. While systems are
subject to a certain amount of requirements creep, such volatility can be minimized by the
extensive exploration and identification of goals and requirements early in the requirements

process.



Because requirements are volatile and constantly changing, there is much iteration in
the refinement process due to the misunderstanding and /or misinterpretation of the require-
ments. Discussions transpire in which issues are highlighted, conflicts arise, and resolution
is sought; when no record is kept of the analysis activities, omissions and the loss of informa-
tion are inevitable. Better tools and process models are needed to support the negotiation,

conflict resolution, and requirements refinement process [21].

Reliance on Intuition

Requirements elicitation techniques have received attention in recent years [23,28,35].
However, a definitive process for analyzing the gathered materials remains largely unad-
dressed and is left primarily to intuition. Requirements elicitation techniques have included
sequential interviews of individual stakeholders or end-users, questionnaires of the general
user group/community, and observations of end-users interacting with a particular sys-
tem [35]. In large software development projects these techniques often prove inefficient,
leading to poor communication among project members, thus necessitating a lengthy reso-

lution process [16].

Ambiguities

When stakeholders write a requirements document, it is usually plagued with informa-
tional ambiguities, uncertainties, and gaps. In some cases, a requirements document is not

always available, requiring analysts to extrapolate the needs and goals of the stakeholder



from only a vague statement of objectives. Often such documents lay the foundation for the
requirements analysis process. Analysts and developers must carefully refine and formalize
the information provided by the customer while iterating with the objective of producing a
functional specification.

Requirements must be stated accurately before they can be implemented correctly.
Consider the requirement: The system should be quick. Such a requirement provides
no intuition into how “quick” the system should be or under what circumstances it should
operate. This requirement is neither precise nor accurate. In contrast, the requirement:
The system should respond to a request for help in less than 10 seconds ex-
hibits much more precision. The expression of precise, clear requirements is essential in the
prevention of requirements errors that arise due to ambiguities. Techniques are needed to
guide analysts through the process of identifying specific goals and needs from ambiguous

starting points.

Disagreements with Stakeholders

Individual analysts have traditionally been responsible for eliciting requirements from
users, synthesizing the information acquired, and then modeling or developing a represen-
tation of the system requirements. The model developed is typically based on the analyst’s
personal understanding of the requirements after he has synthesized the information. The
stakeholders’ only involvement throughout the requirements determination process is lim-
ited to serving as an information source. However, when an analyst creates a model within

the context of these parameters, the structure of the model is usually understandable only to



the analyst [70]. A model jointly developed by both the analyst and a group of stakeholders
affords a model that is easily understood and readily accepted by both parties.

In group requirements determination, analysts, developers and stakeholders are repre-
sented and included in the process. Researchers have advocated increased user involvement
in the systems development process, indicating that this heightened level of participation
contributes to the development of better systems. According to Hayes, user participation
enables the creation of a ‘better’ model than that created solely by the analyst and increases
the probability of implementation success [43]. To this end, continued interaction with and
the involvement of stakeholders throughout the requirements process is strongly advocated.

Given the above problems of complexity, volatility, and ambiguity, we now examine the

consequences of poor requirements processes in the context of system development efforts.

1.2 Consequences of Poor Requirements

The consequences of misinterpreting requirements may be very severe. This section
clarifies and substantiates the importance of clearly understanding the requirements early
in the planning stages of the development process.

The ultimate consequences of requirements errors are expensive. In some large sys-
tems up to 95% of the code had to be rewritten to satisfy changed user requirements [9].
Boehm also reports that 12% of the errors discovered in a software system over a three year
period were due to errors in the original system requirements. The correction cost can be
up to % of the total production cost [9]. If a software requirements error is detected and

corrected during the analysis stage of the development process, the error is relatively simple



to correct since it involves only a correction to the requirements specification. However, if
a requirements error is not corrected until the maintenance stage, a much larger inventory
of artifacts is affected (e.g. specifications, code, as well as user and maintenance manuals).
Additionally, late corrections involve a formal change control and approval process and re-
quire extensive re-validation. Fjeldstad and Hamlen estimate that 47% of the time devoted
to maintenance activities is devoted to the actual enhancement and correction tasks while
62% is dedicated to comprehension activities [34]. These figures suggest that maintenance
costs may be significantly reduced if efforts are devoted to increasing the level of compre-
hension within the system specifications. Thus, it is critical to ensure that requirements
are identified as early as possible and that measures are taken to prevent any requirements
from being overlooked. Because requirements engineering is expensive, the objective is to
improve the process as quickly and efficiently as possible.

As the software lifecycle progresses, the cost of repairs due to errors made in specifying
the requirements increases significantly [9]. Failure to identify errors in requirements can
be dangerous; for example, 62% of safety-related functional faults in the Voyager spacecraft
and 79% in Galileo were caused due to errors in recognizing the requirements [57]. It
must also be noted that requirements errors are persistent. According to Boehm, % of
requirements errors are detected after delivery [9]. That is, the system is already delivered
to the customer before the requirements error is detected by an analyst or the customer.

The consequences associated with poor identification of software requirements, dis-
cussed above, are largely due to lack of validation. The next section examines the origin of

these requirements errors.



1.3 Requirements Validation

Requirements errors are often due to improper requirements validation. Requirements
validation involves assuring that a system meets the actual needs of the stakeholders and
customers. Validation is usually defined by asking variants of the following question: “Are
we building the right system?” Validation is a subjective process in which assessments are
made as to how well the proposed system addresses the stated needs of the stakeholders.
It involves iterative reviews involving the participation of stakeholders and the developers.
The process is necessary to ensure that requirements are consistent, complete, and realistic.
Traditionally, validation includes activities such as walkthroughs and prototyping. Given
these constructs, goal analysis is utilized as a key tool for validating software requirements
and is presented in this thesis as an approach to validation.

Stakeholders frequently fail to use, or even discard, a system based on their acquired
knowledge of the system as an ineffective means of assistance in the achievement of their
goals. The cause of this misuse of effort and lack of efficiency is commonly attributed to
the need to develop an understanding of the requirements from stakeholders who do not
themselves understand the requirements. The problem with requirements engineering stems
from stakeholders lack of understanding of their own requirements; this ambiguity is thus
passed on to the analyst, resulting in imprecise objectivization of software requirements.
Goal analysis improves the understandability of the requirements by enabling the produc-
tion of a set of requirements that may be validated by those to whom the requirements bear
the greatest significance. Since multiple stakeholders have many goals, it can be difficult

to develop a clear understanding of the desired diversity. Goal analysis clarifies the stake-



holders’ goals by tracking the rationale associated with specific goals. Thus, goal analysis

becomes a means to validate system requirements.

1.4 Goals in Requirements Analysis

Traditional approaches to requirements analysis focus on the elicitation of specific re-
quirements. As noted in Chapter 1.3 stakeholders usually have a better understanding of the
general goals they want to achieve than they do the functionality that should be exhibited
by the desired system. The requirements specification, based on formal models and for-
mal specifications, often serves as a contract with the stakeholders. When stakeholders are
unfamiliar with these notations, or have not been trained in formal specifications, these doc-
uments can be cumbersome and intimidating. Since requirements specification documents
serve as a contractual language, it is important to provide stakeholders with information in
an understandable language in which they may actively participate. By focusing on goals
instead of specific requirements, analysts enable stakeholders to communicate using a lan-
guage based on concepts (e.g. goals) with which they are both comfortable and familiar. It
must also be noted that enterprise goals and system goals are more stable throughout the
lifetime of an enterprise than are the requirements defined at any one time. It is therefore
imperative to utilize an understanding and structure of goals to derive requirements from
a stable starting point (e.g. goals).

The changes that occur throughout the progression of requirements model from an
informal representation to a more formal representation may contribute to the difficulties

in communication between the analyst and stakeholders. The transition from requirements



to design may be difficult for end users to follow due to the changes in representation.
Functional modeling techniques do not provide the necessary ‘evolutionary formalization’ [5]
needed to bridge the gap between the analysts’ and stakeholders’ understanding of the
system requirements. Goals are evolutionary and may thus provide a common language for
analysts and stakeholders.

This thesis builds upon existing work which addresses the utilization of goals in systems
development for the direct transformation of goals into formal specifications. The objective
is the direct transformation of goals in natural language requirements. The Goal-Based
Requirements Analysis Method (GBRAM) presented in this thesis introduces techniques
that force in-depth, methodical, and systematic analysis to clearly elucidate the desired

goals.

1.5 Overview of Remaining Chapters

The research discussed in this thesis stems from the need for better heuristics and
procedural guidance for initially identifying and constructing goals, with particular emphasis
focused on those which involve the relationship between goals and scenarios. The need exists
for prescriptive advice in the form of goal-identification heuristics and a set of consistently
recurring questions to guide the process. Research conducted in the preparation of this
thesis has identified a set of issues which practitioners should consider.

This thesis offers prescriptive guidance for goal identification, providing requirements

elaboration techniques centered upon goals and scenarios.

10



Chapter 2 provides a survey of the related work in the field and discusses the use of
goals in requirements engineering as well as the influence of goals in other disciplines.

Chapter 3 presents the case studies which served as the conceptual origin for the Goal-
Based Requirements Analysis Method. The discussion in this chapter justifies the heuristics
presented in Chapter 5.

Chapter 4 details the Goal-Based Requirements Analysis Method (GBRAM), focusing
on the activities with which analysts are involved when employing the method. This chapter
discusses the application of the method, illustrating its salient features through examples
from the case studies discussed in Chapter 3.

Chapter 5 presents the guidelines and heuristics which guide analysts through goal-
driven requirements analysis. Examples from the case studies are provided to elucidate the
heuristics; the heuristics are accompanied by basic questions or inquiries for the analyst to
apply when using the method. A discussion of the possible changes that result from asking
these questions and guidelines for the kinds of refinements the analyst can make are also
concomitant themes in this chapter.

Chapter 6 discusses the two main validation efforts for the method presented in this
thesis: a large scale industrial case study involving the reengineering of an electronic com-
merce Web server, and an empirical investigation in which the method was applied to a
small system by individuals who were previously not familiar with goal-based approaches.

Chapter 7 summarizes the contributions of the thesis and future work needed to further

refine the method.

11



12



