
EPRAM: Evolutionary Prototyping Risk Analysis & Mitigation
(e-Commerce Software Development Process Document)

Annie I. Antón
Ryan A. Carter
Julia B. Earp

Laurie A. Williams

{anton, williams}@csc.ncsu.edu
Julia_Earp@ncsu.edu

Software Requirements Engineering Lab
North Carolina State University

Department of Computer Science
Technical Report #TR-2001-08

August 20, 2001

Abstract
E-commerce software developers are under pressure to develop applications at a record pace. The widespread lack
of process discipline and procedural guidance available for such market driven environments highlights the need for
a
framework to support practitioners’ development efforts. We present a validated evolutionary software development
process, the EPRAM (Evolutionary Prototyping with Risk Analysis and Mitigation) Model, for rapid development
in e-commerce (electronic commerce) environments. The EPRAM Model explicitly addresses the challenges
inherent in small-team rapid development projects requiring no more than 12 people. The model was intentionally
designed to comply with the Level 2 KPAs (Key Process Areas) of the Software Engineering Institute’s Capability
Maturity Model (CMM); it combines evolutionary prototyping with an aggressive risk mitigation strategy to ensure
that proposed requirements adhere to all established security and privacy policies. This process document details the
model and includes a set of 12 document templates for practitioners to employ as needed in a rapid development
effort.

Purpose of this Document
The evolutionary software engineering process is described in detail in this process document. This document
provides a justification for using the evolutionary prototyping process (see glossary). It also recounts the events that
should occur for software development, and it gives an ordering for such events.

Justification for the Evolutionary Process
There is a trend in the software engineering community to build systems using prototyping as the model on which to
base development. Rising costs of software and the lower rates of systems meeting customer needs are helping to
foster an interest in prototyping as the primary means of creating software. Reportedly, an evolutionary process
helps in the following ways:

• Clarifies Management and User Requirements
Due to constantly changing opinions, vague specifications, and indecisive clients, requirements may suffer from
a lack of focus and direction. The direction in which the software should develop can be very unclear when
software engineers employ traditional process methods. Evolutionary prototyping helps to alleviate this by
embodying the better-understood requirements in a tangible form. Management and users can see their
requirements in the prototyped systems, and therefore can validate the requirements reflected in the prototype
[LSZ93]. By the iterative nature of the prototype’s evolution, the customer gets the opportunity to accept,
reject, or change the prototype, and in turn, accept, reject, or change the project’s requirements.

• Uncovers Missing or Unknown Requirements
Another benefit associated with evolutionary prototyping is that of discovering a more complete set of
requirements for the software project. Once a prototype baseline is established, users can often find additional
functions that the prototype must provide. In [Gra91], Graham presents this ideal facet of the evolutionary
process by claiming that “the key is that prototypes are an excellent means of eliciting correct, consistent, and
complete specifications of requirements.” Through the use of evolutionary prototyping, developers are able to
find out what requirements exist that have not been considered [Dav92].

• Allows for System Flexibility to Meet Changing Constraints
Evolutionary prototyping is beneficial to practitioners who are struggling to build software systems that by their
very nature are based on constantly shifting assumptions, constraints, and requirements. Lehman has summed
up this problem by writing that software always encapsulates some assumptions. Some of these assumptions
will be stated in the documentation. Some assumptions will be implicit. As software is being developed, the
world on which the assumptions are based will change [Leh90]. Evolutionary development models seamlessly
take these effects into account, allowing the project to adapt to the changes and uncertainties almost inevitably
encountered in software system creation. In these models, commitments in the constraints and requirements are
only held until the beginning of the next prototyping cycle, where they can changed and altered as needed. The
evolutionary model’s adaptability works to promote its acceptability within the software community.
Developers working on particularly volatile projects often look first to evolutionary prototyping from which to
base their project [NC98, FD89].

• Provides a Method Whereby Users, Management, and Developers Can Communicate about Systems
Graham is a proponent of evolutionary prototyping for the purposes of facilitating communication between all
stakeholders of the software project. The prototypes produced allow all involved to have a common ‘language’
from which to speak about the system. There is less room for argument about what a prototype does – unlike
the misinterpretations stemming from the conflicting, ambiguous natural language specifications seen in the
more traditional, non-evolutionary software development methods. Many stakeholders are also less intimidated
by the presentation of a prototype than by the paper avalanche of specifications, designs, screen layouts, and
diagrams found too often in methods such as the Waterfall model [Gra89, Gra91, Gra98]. Graham is not alone
in his support of prototyping for communication [LSZ93].

• Allows Participants to Reflect on Lessons Learned During System Development.
As opposed the linear Waterfall model (see glossary), traditional evolutionary prototyping allows developers to
take what they have learned and experienced from the implementation of the earlier prototypes and correct their
mistakes and build on the experiences to gradually refine the software system [Bea99]. This sentiment is shared

among software engineers, as there is a common belief that “evolutionary models of prototyping take advantage
of knowledge acquired as development progresses [FD89].”

Thus, as we see above, evolutionary prototyping is good at finding missing, previously unknown requirements
throughout development. Software processes with an evolutionary approach may help to lessen development time,
but will always ease maintenance [Gra91]. Unlike popular linear models or some spiral models (see glossary) where
early work products are paper at best, this model shows promise in that core systems evolve quickly and early in the
development cycle. In the current online world where time is measured in days instead of months or even years,
evolutionary prototyping may draw on its strengths to be the premiere process.

Recommendations
The process is recommended for a small team (approximately 4 to 6 people) working for approximately 800
development hours. It is appropriate for many development projects; yet this particular model was produced with an
eCommerce (see glossary) application focus.

Roles, Groups, and Responsibilities
The process requests that nine roles be established for the project, where one person may have multiple roles or
where multiple people can fulfill one role. In the same manner, these roles are assigned to one of three groups that
collaborate in specific areas or for particular purposes during the project. Roles are listed below as lending
themselves to individuals with either a technical or a management background. This allows the team members to
make informed choices that will demonstrate their strengths throughout the project. The roles, groups, and
suggested responsibilities are given as follows:

Role Role Responsibilities Type of Role Group Group Responsibilities
Project
Manager
(Technical)

1. Performs overall supervision of the
project

2. Validates configuration management
practices

3. Maintains project plan
4. Delegates requirements gathering
5. Performs implementation
6. Arbitrates problems as they occur

Technical

Technical
Writer

1. Oversees and maintains
documentation

2. Takes meeting minutes and meeting
documentation

3. Acts as the configuration
management expert

4. Writes privacy policy and security
policy and ensures that the work
products adhere to these policies.

5. Performs implementation when
necessary

Management
or Technical

Requirement
s Engineer

1. Leads requirements gathering
efforts

2. Communicates with stakeholders,
clients, end-users

3. Conducts interviews with
stakeholders

4. Acts as interface to the customer
5. Documents requirements as well as

policies elicited.

Management

Business
Manager

1. Develops business plan, if
appropriate, or revenue plan.

2. Maintains business plan

Management

Software
Engineering
Group

1. Guides project direction
2. Aids in configuration

management
3. Assists in project proposal
4. Leads documentation

effort
5. Leads business-side

efforts

Chief
Architect

1. Oversees design of overall system
2. Categorizes implementation work
3. Does resource planning
4. Performs implementation

Technical Software
Quality
Assurance
Group

1. Develops tests for
prototypes. Reviews code
and documentation,
including the project plan,
requirements document,
and design document

Quality
Assurance
Expert

1. Designs test cases
2. Executes tests
3. Maintains fault / bug reports
4. Performs implementation

Technical

Lead
Programmer

1. Delegates implementation work
2. Oversees defect resolution
3. Performs implementation

Technical Software
Development
Group

1. Assists in user interface
screen creation

2. Leads prototype
development effort

Subject
Specialist

1. Knows some special topic
2. Performs implementation

Management
or Technical

User
Interface
Design
Specialist

1. Creates storyboard design (e.g.
paper prototype or html editor
generated design)

Management

The Process – In General

The process is a tailored evolutionary prototyping-based process. Evolutionary prototyping is a form of software
system creation in which developers gather the most complete, best-understood requirements possible; design and
implement a prototype; and have the customer evaluate the prototype. The developers glean new requirements and
clarify existing requirements based on this interaction. This process is repeated until a working system emerges that
encompasses the true set of customer and system requirements.

The process allows for four development cycles. During the first cycle, some initial work is performed to establish
the business case, plan the project, and to better understand the customer needs and wants, as well as to establish a
basic understanding of what is required of the new software. The second cycle verifies that the team has understood
the general direction to which the system needs to aspire. This cycle involves some throw-away (glossary) user
interface prototypes created for the purpose of demonstrating to the customer the intentions of the group. The third
cycle is the first round of evolutionary prototyping. In this phase, the first true embodiment of the requirements
results in a working prototype. The customer evaluates this prototype and adds and modifies requirements. Finally,
during the last development cycle, the prototype is evolved with the new and modified requirements. The system is
tested and delivered to the customer.

During the Process
Specific areas must be addressed throughout the evolution of the software. One of the first items created, when
appropriate or needed, is the business plan (glossary). Also in the initial development cycle, the project plan
(glossary) is also written. Both plans must be maintained as the development progresses. The business plan helps to
describe the project in the context of the market and must be modified to meet the true state of the project and
market. In addition, as schedules, personnel, roles, responsibilities, project descriptions, or related documents are
changed, created, added, or deleted during the course of the project, the project plan must be updated to reflect these
modifications. The provided business plan and project plan templates can serve as guides as to what items must be
included. The project manager with the assistance of the technical writer should be responsible for the maintenance
of the project plan, while the business manager with the assistance of the technical writer is responsible for updating
the business plan.

Privacy and security are aspects of eCommerce systems that often determine how usable any system will be. In
recognition of the importance of these areas, privacy and security policies must be established from the beginning of
the project. In the initial cycle, they are created – and to be effective, these policies must not only be maintained,
but they must also be embodied in the system that is produced. To that end, it is the team’s responsibility, under the
guidance of the technical writer, that every document and prototype part that is produced adheres to the privacy and
security policy.

In addition, configuration management (see glossary) must be performed throughout the project’s lifetime.
Configuration management is the responsibility of the technical writer and is validated by the project manager. It
should be completed as set forth in the configuration management plan, which in turn is based, at least in part, on the
provided configuration management template.

Finally, throughout the process, quality assurance (see glossary) is an important area on which to focus. All
documents should be checked for errors and go through the process of being validated and verified. In addition, the
prototypes themselves must be determined to be free of error and defects. The creation of tests and review of both
documentation and code should be done continuously throughout system creation. The Quality Assurance Group
leads this effort.

The Process – Cycle 1
Summary of what has been accomplished before the start of this cycle:
Nothing.

What this cycle accomplishes:
During the first cycle, initial customer input serves as the basis from with the business manager and the technical
writer develop the [optional] business plan using the business plan template. Using this information, the project
manager and technical writer establish the project plan with assistance from the entire group in accordance with the
provided project plan template. This allows for the creation and understanding of roles, responsibilities, schedules,

and a project description. At approximately the same time, work should be performed to create the security and
privacy policies that will guide the project. The team collaborates on the creation of the policies, and the policies
and the adherence to these policies will serve as a measure of the quality of the system that is produced. This
underscores the importance of security and privacy aspects of an eCommerce system.

After the policies are established, an initial set of requirements can be gathered from the customer, users, other
software systems, and project team so as to contribute understanding to what the system must do. The requirements
gathering effort is led by the requirements engineer under the direction of the project manager, who in turn delegates
requirements gathering to the team. The requirements should be documented as set forth in the requirements
document template with the technical writer leading the documentation creation effort. The cycle ends with a group
review / risk (see glossary) meeting to analyze the group’s efforts, directions, problems, and solutions. This meeting
is performed as given in the risk / review meeting template.

Summary of what has been accomplished by the end of this cycle:
• Business Plan has been created using the Business Plan Template
• Project Plan has been created using the Project Plan Template
• Privacy and Security Policies have been created
• Initial Requirements Set has been documented using the Requirements Document Template
• Risk / Review Meeting has been held according to the Review and Risk Meeting Template
• Risks have been identified and corresponding mitigation strategies have been enacted as discussed in the Risk /

Review Meeting

The Process – Cycle 2
Summary of what has been accomplished before the start of this cycle:
At the beginning of this cycle, the business plan has been developed, the project has been planned, the privacy and
security policies exist, a core set of requirements has been discovered and documented, and risk mitigation strategies
have been set into place.

What this cycle accomplishes:
To aid in understanding and to provide a more concrete communication path between the customer and the
development team, the second cycle focuses on creating throwaway-user interface prototypes to ensure that
development is proceeding in the right direction. The Software Development Group creates basic user interface
screens with input and help from the entire team. These screens are archived by the technical writer according to the
appropriate configuration management policies. In addition, and in parallel, the chief architect begins to work
toward creating a system design based on the identified requirements.

The user interface screens are taken to the customer to bridge communication between the stakeholders. These
screens serve as a tool to allow stakeholders to discuss the system and discover communication breakdowns and
missing requirements. This process cycle also helps to ensure future development will follow the correct path. As
the customer and developer(s) discuss the screens and the system, new or modified requirements may be discovered.
Such requirements are documented in full by the technical writer as a complementary section to the original
requirements document. The cycle ends with a risk / review meeting to provide a common understanding of the
status of the project, as well as uncover and rank risks, create risk mitigation strategies, and judge the effectiveness
of risk mitigation strategies. The system screens are archived and not used again.

Summary of what has been accomplished by the end of this cycle:
• User Interface Prototyping has been performed
• Initial System Design has begun using the Design Document Template
• Customer has evaluated the prototypes of the interface
• Requirement set has been modified according to the Requirements Document Template with the feedback from

the interface evaluation
• Risk / Review Meeting has been held according to the Review and Risk Meeting Template
• Risks have been identified and corresponding mitigation strategies have been enacted as discussed in the Risk /

Review Meeting

The Process – Cycle 3
Summary of what has been accomplished before the start of this cycle:
At the beginning of this point in the lifecycle, the requirements have been created and validated, system design has
begun, and the customer has provided input into the concepts and initial screens of the software.

What this cycle accomplishes:
In accordance with the new requirements and customer’s comments, the system design is modified and completed as
the bridge between the existing set of requirements and prototype implementation. The chief architect is responsible
for overseeing the design completion. As the system design takes form, the lead programmer delegates the
implementation work that arises from the system design and together, the team codes. The quality assurance expert
creates tests for the software components and system based off of the requirements. The system programming,
debugging, and testing is performed until the requirements are met and the design is fulfilled.

When the prototype is completed, it is shown to the customer. The customer looks over the created system and
along with the developers, may uncover requirements that are new or requirements that need to be changed. As
before, the new or modified requirements are documented in full by the technical writer as a complementary section
to the original requirements document. The cycle ends with a risk / review meeting to provide a common
understanding of status of the project, as well as uncover and rank risks, create risk mitigation strategies, and judge
the effectiveness of risk mitigation strategies.

Summary of what has been accomplished by the end of this cycle:
• The system design is completed according to the Design Document Template
• The first prototype that embodies the requirements and design has been created
• The first prototype has been shown to and evaluated by the customer
• New or modified requirements are identified and documented as provided for by the Requirements Document

Template
• Risk / Review Meeting has been held according to the Review and Risk Meeting Template
• Risks have been identified and corresponding mitigation strategies have been enacted as discussed in the Risk /

Review Meeting

The Process – Cycle 4
Summary of what has been accomplished before the start of this cycle:
At the beginning of this point in the lifecycle, the final set of requirements has been created and validated, and the
customer has provided input into the first prototype.

What this cycle accomplishes:
In accordance with the new requirements and customer’s comments, the system design is modified and completed as
the bridge between the existing set of requirements and prototype implementation. The chief architect is responsible
for overseeing the design modification. As the system design is reworked, the lead programmer delegates the
implementation work that arises from the system redesign and together, the team codes. The quality assurance
expert creates tests for the software components and system based off of the new requirements. The system
programming and debugging is performed until the requirements are met and the design is fulfilled.

At the conclusion of system implementation, the developers thoroughly test the system, using the tests that have
been created by the Software Quality Assurance Group and including any tests to complete testing coverage as
necessary. As defects or bugs are found, the system programmer orchestrates the fixes needed to correct problems.
After the system is tested, a review / risk meeting is held to wrap up system creation. Unresolved issues are
discussed. Finally, the completed system is delivered to the customer. This system should encompass the needed
functionality and the approved system qualities as dictated by the customer.

Summary of what has been accomplished by the end of this cycle:
• The system design has been updated in a form consistent with the Design Document Template
• The final prototype that embodies the requirements and design has been created
• The final prototype has gone through extensive testing as noted in the SQA Template
• Risk / Review Meeting has been held according to the Review and Risk Meeting Template
• Open issues have been identified and discussed
• The final prototype has been delivered to the customer

Areas of Special Concern
Just as there are reasons why an evolutionary prototyping base was chosen for this model, there are areas where
practitioners using this model need to pay careful attention. If these drawbacks can be identified, they can be
monitored to ensure the process results in a successful project. Such areas of special concern include:

• Difficulty of Control
Software engineers who use evolutionary prototyping often face a process that seems difficult to manage and
control. The prototyping literature demonstrates that management of evolutionary prototyping is a major
contributor to the building of ‘good’ software. Control of this process lies in solid management practices, as it
can be difficult for all stakeholders to agree on the direction and objectives of the software development. The
contents of the next prototype may also be hard to determine as a number of revisions and decisions may need
to be made by management. Finally, it is often hard to judge the level of completeness of the prototyped system
as prototyped systems often lend themselves to being either over-evolved or delivered prematurely [BS96].
Various methods abound in handling the difficulty of control issue. Research has being done in the areas of
limiting iteration cycles [Gra89, Gra91] and using risk analysis [BS96] for the purpose of controlling the
evolutionary process.

• Functionality Creep Possibility
A major benefit of evolutionary prototyping for a process model is that it leads to systems that meet known user
requirements and yet can change to meet the user requirements that are discovered later. This helps to produce
systems that the customers want and need. However, this too, can become burdensome as customers often try
to continually request that new features be added – features that will add to development time and costs [Gra91,
Gra98]. Stricter time limits and limits on the number of iteration cycles are sometimes used to mitigate this
drawback.

• Poorly Structured Applications
Traditionally, evolutionary prototypes have had a certain amount of poor structure associated with them. This
structure deficiency is mainly the result of the iterative process of the evolutionary model [NC98]. Often, the
structures that result from evolved prototypes are considered to be inefficient when compared to their linear
system counterparts [BS96]. Care must be taken when cycling through prototype refinement processes so that
the design is kept clean.

• Lack of Continued Commitment from Users
End user involvement is a must-have for any evolutionary prototyping based project [LSZ93]. End users are an
integral part of the process of refining requirements and evaluating prototypes. They must be involved for
longer sustained periods than is traditionally required by other processes. Users have to be aware of the status
of the prototypes and should know what to expect from the prototypes that they are shown [Bea99]. This is
necessary as users sometimes view prototypes as the ‘real’ systems, even when the systems are not complete or
fully specified [CL99].

In Conclusion
The process, as provided above, fulfills the tailored CMM level two: Repeatable level as set forth in the “Tailored
CMM for a Small eCommerce Company” paper. The model itself may be tailored, as well, to fit the needs of the
development group as long as the spirit is maintained.

References
[AE01a] A.I. Antón and J.B. Earp. Strategies for Developing Policies and Requirements for Secure Electronic

Commerce Systems, To appear in Recent Advances in Secure and Private E-Commerce, Kluwer Academic
Publishers, 2001.

[AE01b] A.I. Antón and J.B. Earp. The NCSU E-Commerce Studio: Supporting Multidisciplinary Project Driven
Development for Secure Systems, Submitted to Communications of the ACM, 13 July 2001.

 [BS96] Baskerville, R.L. and J. Stage. Controlling Prototype Development Through Risk Analysis. MIS Quarterly,
20(4), Dec., pp. 481-504, 1996.

[Bea99] Beaumont, R. Information Systems (IS) Development Methods. Source: Laptop; C:\HIcourseweb
n e w \ c h a p 1 2 \ s 3 \ d e s 1 . d o c , 1 9 9 9 . O n l i n e : h t t p : / / w w w . r o b i n b t 2 . f r e e -
online.co.uk/virtualclassroom/chap12/s3/des1.htm

[CAD01] R.A. Carter, A.I. Antón, A.Dagnino and L. Williams. Evolving Beyond Requirements Creep: A Risk-
Based Evolutionary Prototyping Model. To appear 5th IEEE International Symposium on Requirements
Engineering, Toronto, Canada, August 2001.

 [CL99] Constantine L. and L. Lockwood. Software for Use: A Practical Guide to the Models and Methods of
Usage-Centered Design. Addison-Wesley, 1999.

 [Cul94] Culver-Lozo, K. Rapid Iteration in Software Process Improvement: Experience Report. 'Applying the
Software Process', Proceedings of the Third International Conference on the Software Process, pp. 79-84,
1994.

 [Dav92]Davis, A.M. Operational Prototyping: A New Development Approach. IEEE Software, Volume: 9 Issue: 5,
Sept., pp. 70-78, 1992.

 [Gra89] Graham, I. Structured Prototyping for Requirements Specification of Expert Systems. IEEE Colloquium on
Expert Systems Lifecycle, pp. 5/1-5/3, 1989.

 [Gra91] Graham, I. Structured Prototyping for Requirements Specification in Expert Systems and Conventional IT
Projects. Computing & Control Engineering Journal, Volume: 2 Issue: 2, March, pp. 82-89, 1991.

 [Gra98] Graham, I. Requirements Engineering and Rapid Development – An Object-Oriented Approach. Addison-
Wesley, 1998.

 [Leh90] Lehman, M.M. The Role of Process Models in Software and Systems Development and Evolution.
‘Experience with Software Process Models’, Proceedings of the 5th International Software Process
Workshop, pp. 91-93, 1990.

 [LSZ93] Lichter, H., M. Schneider-Hufschmidt, and H. Zullighoven. Prototyping in Industrial Software Projects –
Bridging the Gap Between Theory and Practice. Proceedings of the 15th International Conference on
Software Engineering, May, pp. 221-229, 1993.

 [NC98] Nunes, N. and J.F. Cunha. Case Study: SITINA - A Software Engineering Project Using Evolutionary
Prototyping. Proc. CAiSE'98/IFIP 8.1 EMMSAD'98 Workshop, 1998.

Process Diagram for the Evolutionary Process Model

Software Engineering Seminar Group

North Carolina State University
Department of Computer Science

Fall 2000

Key for Process Diagram

Activity that begins at one specific time and is performed
continuously throughout the remainder of the process

Activity that is performed throughout the entire process

Activity that is performed at one given time in the process

Work product or document that is produced

Prototype that is produced

Major (control) flow through the process

Minor (data) flow through the process

Risk Mitigation flow

Cycle Boundary

Flow Separation / Join

Note about the coloration given in the diagram:
Each cycle’s work products are displayed in this diagram as having a color specific to that cycle. Work products
produced in cycle 1 are faded to tan; work products in cycle 2 are faded to green, work products in cycle 3 are faded
to pink, and work products in cycle 4 are faded to blue. This allows easier tracing and reference to a given work
product. For example, one can distinguish between the requirements document created in cycle one, and the
updated requirements document from cycle 2. A combination of the colors allows the reader to see that the work
product was originally produced or modified in an earlier cycle and is updated in the current cycle. The documents
appearing at the introduction bar of each cycle are work products that exist from earlier cycles. Finally, work
products that are faded to gray (as shown in the first cycle) are those products that are continually modified
throughout ALL cycles in the process.

SQA Config.
Mgmt.

To Cycle Two

Reqts
Doc

Create
Project

Plan

Maintain
Security

&
Privacy
Policies

Create
Security

&
Privacy
Policies

Gather
Initial
Reqts

Project
PlanUpdate

Project
Plan

Risk List
&

Mitigation
Strategies

Risk
Mitigation

Risk
Analysis
/ Review

Security
&

Privacy
Policies

Add Security &
Privacy Reqts to

Reqts Doc as
needed

Start of Project

Initial
Customer

Input

Create
Business

Plan

Business
PlanUpdate

Business
Plan

High level
input

(project
description)

Risk List
&

Mitigation
Strategies

Updated
Reqts
Doc

Partial
Design

Doc

From Cycle One
Reqts
Doc

Begin
System
Design

Risk List
&

Mitigation
Strategies

Prototype
User

Interface User
Interface
Screens

Customer
Evaluates

UI
New &

Modified
Reqts

Risk
Mitigation Risk

Analysis
/ Review

To Cycle Three

Reqts
Doc

Design
Doc

From Cycle Two
Reqts
Doc

Risk List
&

Mitigation
Strategies

Complete
System
Design

To Cycle Four

Risk List
&

Mitigation
Strategies

Updated
Reqts
Doc

Customer
Evaluates
Prototype New &

Modified
Reqts

Risk
Mitigation Risk

Analysis
/ Review

Design
Doc

Build
Prototype

Prototype

Reqts
Doc

Reqts
Doc

Development
Testing /

Debugging

Reqts
Doc

Risk List
&

Mitigation
Strategies

From Cycle Three
Design

Doc
Risk List

&
Mitigation
Strategies

Design
Doc

System
Redesign

Development
Testing /

Debugging

Maintenance / Project Conclusion

Open
Issue

Resolution

Risk
Analysis
/ Review

Build
Prototype

Reqts
Doc

Prototype

Reqts
Doc

Reqts
Doc

Delivery
to

Customer

Prototype

Reqts
Doc

List of Document Templates

1. Statement of Work

2. Business Planning Document

3. Configuration Management Document

4. Project Plan

5. Software Quality Assurance Plan

6. Project Estimation Document

7. Privacy Policy

8. Security Policy

9. Requirements Specification

10. Design Specification

11. Review / Risk Meeting Agenda

12. Test Plan

 [Project Name] Statement of Work

[Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
This document justifies the project with a cost/benefit analysis and describes the business and project
objectives.

Project Background
Describe any related projects that have contributed to the initiation of this project or those that should be
worked in conjunction with this project. Note the status of these projects, their successes, challenges, and
key contacts. Describe why and how this project was initiated and any related project history.

Related Documents
List documents associated with any related projects or the history of this project as described in Project
Background.

II. Executive Summary

Requirements/Scope Summary
In paragraph form, provide an overview of the requirements and the scope.

Constraints/Issues
Describe any constraints or issues discovered thus far. This may include technical, schedule, resource,
cost, or other issues that could not be resolved. Risks that are not strongly balanced with effective
countermeasures may also be described here. Also identify any specific limitations within which the
project must operate.

III. Project Overview

Business Objectives

Reference No. Business Objective Description

Project Objectives
For each Business Objective, define one or more measurable Project Objectives.

Business Objective
Ref. No.

Project
Objective Ref.
No.

Project Objective Description

IV. Justification

Benefit Analysis
What are the tangible, intangible and strategic benefits.

Cost/Benefit Analysis
Provide a quick cost/benefit summary.

Risk Analysis
What are the key project risk factors and the tasks necessary to manage or minimize these risks.

V. Document Revision History

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

 [Project Name] Business Planning Document
[Document Version Number] Project Team:

 [Date] [Name] [Role]
[Name] [Role]

 Document Author(s): [Name] [Role]
[Name] [Name] [Role]

[Name] [Role]
 Project Sponsor:

[Name]

I. Introduction
The purpose of this document is to provide guidance for the creation of a business plan for the eCommerce
project. The business plan places the project in a market context and demonstrates the outlook, usefulness,
as well as expected growth of demand for the system.

II. Executive Summary
This section should be created last. It needs to encompass the following four areas:

The Company, the Founders, the Vision
Tell who the company is and what it does to make money. Highlight the management – their
accomplishments and aptitude. Sum up what management expects financial and operational
output to be over the time covered by the business plan.

Market Opportunity
Why is this venture a good idea? What sort of market does the venture face in the future?

Use of Proceeds
How does the company plan to use proceeds? This section is often represented as a financial
statement showing net proceeds, capital expenditures, and proceeds for working capital and
reserves.

Financial Snapshot
Financial overview is provided in this section. It includes items such as revenues, cash flows, and
selected performance metrics.

III. The Enterprise
This section is included to provide information about the product or service and its advantage in the market
place. Here, you are ‘selling’ the project.

The Product
Business plan readers need to understand the product. Provide enough detail in order to
communicate to the intended audience what you will produce.

Competitive Advantage
Put the product in the context of the market to demonstrate its advantages. A good way to show
these advantages is in tabular form that compares the performance, cost, or other features to those
of leading alternatives or substitutes.

IV. The Market
No matter how good of a product your group has, it needs a market to drive support for its creation. This
section builds the case to the readers or investors of why they need to invest in the project. Here, you are
‘selling’ the market’s potential.

The Industry
Give an overview of the industry of which your project will be a part. Include a background
discussion of this industry, as well as industry trends that show future growth.

Market Size and Growth
Discuss your project’s market. Note the size and growth rates that your team is facing.

Target Market
Quantify and describe the segment(s) for which you are gearing your project. Talk about segment
prospects – their needs and wants and the trends that these segments are facing that may influence
your project.

Competition
Talk about your competitors. Give key attributes of competitors or broad descriptions of
competitor classes in this subsection.

Promotion and Advertising
What channels will you use to get people educated about your product? This subsection will
provide a description of the advertising, education, and public relations that you will employ to
drive demand. Describe the types and quantities of the media that will be used.

V. Operations
Use this section to talk about the items that are specific to the company’s operations. In this part of the
document, talk about any technological development efforts done to date, staffing, quality, or productivity
if applicable. Give a description of the facilities and computer resources (information systems) that you
may have. Take note, however, that management may not want some items disclosed to outside parties.

VI. The Organization
Include the names and titles of key officers in the company. Include brief, factual, relevant, career
summaries for these officers. Officer compensation, supporting professionals (legal advisors, legal firms,
and accountants), an organization chart, and employee headcount forecast may also be included if relevant.

VII. Business Risks
It is important to identify potential problems within the business context. It is often helpful to include some
form of a risk mitigation strategy for these business risks.

VIII. Prospective Financials
Include financial information including assumptions made, balance sheets, income statements, and cash
flow statements.

IX. Document Revision History
This section includes a list of significant changes that have been made to this document after 1.0 version
has been submitted for assessment. The revision history should contain a dated list of revisions to the
document consisting of: the date of each change, the person responsible for the change, and a description of
the change. You should be able to trace changes to the individual who completed the modification.
Changes are to be listed in reverse chronological order, recording the following information for changes:

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

* * A d a p t e d f r o m i n f o r m a t i o n p r e s e n t e d a t :
http://www.bulletproofbizplans.com/bpsample/Sample_Plan/sample_plan.html

[Project Name] Configuration Management Document

[Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
The configuration management (see glossary) plan sets forth the guidelines to help control the changes
inherent in software system development.

II. Managed Entities
• Requirements Document
• Privacy Policy
• Security Policy
• Project Plan
• Design Document
• Risk Analysis and Mitigation Documentation
• Prototype
• Any other documentation needed for historical or back-up purposes

III. Responsible Individual
The technical writer works to maintain and ensure configuration management practices. The project
manager provides necessary support for ensuring that all team members assist with configuration
management.

IV. Change Control and Version Management Policies
This section describes policies regarding the management of change and versioning within the software
system. Areas to be addressed include:
• Where the files will be kept
• What process the group members must undergo to request that changes be made to the software
• How files will be maintained such that two individuals are not making changes to the same files

without being aware of the other’s changes
• Define standard naming conventions that may be applied so that versioning can be easily performed
• Who may access files and make changes

V. Document Revision History

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

[Project Name] Project Plan

 [Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
The Project Plan establishes team member roles and responsibilities. Establishes the schedule of project
milestones and deliverables

II. Project Description
Provide a brief description of the goals and objectives of the project. Two paragraphs or one page is
sufficient. Be sure to include a discussion of your clients. In other words, who have you made
arrangements with to interview as part of your requirements gathering efforts?

III. Related Documents
List related information (and provide links) that will assist a reader in understanding any relevant
background information that is useful for this project.

IV. Group Organization and Project Roles
Roles should be assigned to individual group members in order to avoid miscommunication and
misunderstanding. Provide a brief description, according to roles, of each team member’s specific
responsibilities. The group must choose a project manager/group leader to organize and assess the progress
of the project. The roles descriptions listed here are suggestions and should be modified as needed to fit
your particular group.

Role Individual(s) Role Description Type of Role
Project Manager

(Technical)
[Name(s)] 1. Performs overall supervision of the project

2. Validates configuration management practices
3. Maintains project plan
4. Delegates requirements gathering
5. Performs implementation
6. Arbitrates problems as they occur
7. Member of the Software Engineering Group

Technical

Technical Writer [Name(s)] 1. Oversees and maintains documentation
2 . Takes meeting minutes and meeting

documentation
3. Acts as the configuration management expert
4 . Writes privacy policy and security policy and

ensures that the work products adhere to these
policies.

5. Performs implementation when necessary
6. Member of the Software Engineering Group

Management or
Technical

Requirements
Engineer

[Name(s)] 1. Leads requirements gathering efforts
2 . Communicates with stakeholders, clients, end-

users
3. Conducts interviews with stakeholders
4. Acts as interface to the customer
5 . Documents requirements as well as policies

elicited
6. Member of the Software Engineering Group

Management

Business
Manager

[Name(s)] 1 . Develops business plan, if appropriate, or
revenue plan.

2. Maintains business plan
3. Member of the Software Engineering Group

Management

Chief Architect [Name(s)] 1. Oversees design of overall system
2. Categorizes implementation work
3. Does resource planning
4. Performs implementation
5. Member of the SQA Group

Technical

Quality
Assurance Expert

[Name(s)] 1. Designs test cases
2. Executes tests
3. Maintains fault / bug reports
4. Performs implementation
5. Member of the SQA Group

Technical

Lead Programmer [Name(s)] 1. Delegates implementation work
2. Oversees defect resolution
3. Performs implementation
4. Member of the Software Development Group

Technical

Subject Specialist [Name(s)] 1. Knows some special topic
2. Performs implementation
3. Member of the Software Development Group

Management or
Technical

User Interface
Design Specialist

[Name(s)] 1. Creates storyboard design (e.g. paper prototype
or html editor generated design)

2. Member of the Software Development Group

Management

V. Schedule
Fill-in the assignment and completion dates for the provided (high-level) schedule for the project. The
assignment date is the date on which a given task is planned to begin and the completion date is the date on
which the task is scheduled to be finished. It may be helpful to supplement the table below with scheduling
tools such as Gantt or Pert charts (see glossary) or a more-in depth schedule. When creating a schedule,
remember that it is important to easily differentiate on what day a particular task should be complete.
Tasks in the table are listed in the approximate order in which they need to be performed.

Task Template Used Assignment Date Completion Date

Cycle 1
• Obtain Initial Customer Input /

Project Description
• Create Business Plan Business Plan
• Create Project Plan Project Plan
• Write Privacy and Security

Policies
• Perform Initial Requirements

Gathering
Requirements Document

• Hold Risk Analysis and Review
Meeting

Review and Risk

Cycle 2:
• Perform User In terface

Prototyping
• Start Initial System Design Design Document
• Have Customer Evaluate User

Interface

• Modify Requirements Requirements Document
• Hold Risk Analysis and Review

Meeting
Review and Risk

Cycle 3:
• Complete System Design Design Document
• First Prototype Development,

Debugging, and Testing
• Have Customer Evaluate First

Prototype
• Modify Requirements Requirements Document
• Hold Risk Analysis and Review

Meeting
Review and Risk

Cycle 4:
• Final Prototype System

Redesign
Design Doc

• Final Prototype Development
and Debugging

• Extensive Development Testing
• Hold Risk Analysis and Review

Meeting
Review and Risk

Throughout the Cycles:
• Configuration Management Configuration Mgmt
• Privacy and Security (Policy)

Management
• Quality Assurance SQA
• Project Planning Updates Project Plan

VI. Document Revision History

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

[Project Name] Software Quality Assurance Plan

 [Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
The document describes a project team’s SQA goals and responsibilities. It also includes the description of
where the SQA group is placed within a project (including the reporting structure and the manner in which
SQA group will interact with software engineering teams).

II. Quality Attributes
The software quality plan clearly states what quality attributes (e.g. safety, security, reliability, resilience,
robustness, understandability, testability, adaptability, modularity, complexity, portability, usability,
reusability, efficiency, learnability, maintainability) are more important to your project. You should justify
which attributes you choose to emphasize. This provides a basic ideal that all practitioners can target
throughout development. Be aware that you may have to give up higher levels of one attribute (such as
efficiency) for higher levels of another (such as usability).

III. SQA Tasks
Provide a brief description of all SQA tasks and assign responsibility for each if possible. Software Quality
Assurance tasks are those tasks that establish team procedures and standards to increase quality in the
software. A very high-level summary of SQA is:

 step 1: develop the product
 step 2: assess product (software) quality
 step 3: if the quality is not sufficient, improve the process and return to step 1, else standardize the

process.

Tasks may include, but are not limited to:
• definition of when and how software inspections will occur to find errors in the design or code
• development of product standards
• development of process standards
• development of documentation standards
• monitoring the development process to ensure that both the process and product standards are being

followed
• monitoring progress of the project to provide management information
• defining when and how quality reviews will occur to find differences between the specification and

design, code, or documentation
• collection of metrics if necessary and desirable
• identification of procedures for error reporting and tracking

IV. Document Revision History

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

*Information, in part, from Software Engineering, Ian Sommerville, 1995.

[Project Name] Project Estimation Document

 [Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
The estimation template provides methods for project estimation including software work products ,
software effort, and critical computer resources.

II. Size and Effort Estimate
By estimating the size of the product you plan to build, you can better judge the amount of work required to
build it. We recommend using a method taken from extreme programming (see glossary) literature where
you divide the work to be done into tasks that take approximately one full workday to complete. The
project plan that you have established will assist you in determining what needs to be done next and the
dates whereby things will need to be completed. Thus, size estimation is planned on small tasks rather than
the larger task blocks. Divide the major process steps into small tasks and allow each group member ‘own’
the tasks for which he or she is responsible.

III. Critical Computer Resources Estimate
In this section, estimate the hardware and the software that you will need to finish the eCommerce
application development. This can be done by listing the estimated resources in a table such as the
following:

Category Type Example
Platforms Workstation or PC & the number of such machines that you will needHardware
Internet connections Example: DSL, modem, school network, etc.
Operating Systems Example: Windows family, Linux, Unix, Mac, etc.
Development Tools

Software

Databases

IV. Document Revision History:

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

[Project Name] Privacy Policy

 [Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
This document is intended to help create the parts of a privacy policy that will be required as a result of the
new project deliverable. Documents new and/or modified privacy policies which must be adhered to by the
system. Describes the kinds of information collected by the web site and the way that information is
handled, stored, and used.

II. Privacy Policy
A privacy policy should, at a minimum, address the Fair Information Practice Principles.

A. Notice/Awareness
A privacy policy must be easy to find and understand. The policy must be available prior to collecting or
requesting individually identifiable information. State clearly what is being collected and how it will be
used.

B. Choice/Consent
Consumers should be given the opportunity to choose how individually identifiable information collected
from them online may be used.

C. Integrity/Security
State how the company is taking appropriate measures to assure data reliability and protect it from loss,
misuse or alteration.

D. Access/Participation
Consumers should be able to access the information being collected about them. State how inaccuracies in
individually identifiable information, such as account or contact information, may be corrected.

III. Related Documents
List related information (and provide links) that will assist a reader in understanding any relevant
background information that is useful for this project.

IV. Document Revision History

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

[Project Name] Security Policy

 [Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
This document is intended to help create the parts of a security policy that will be required as a result of the
new project deliverable. According to the new system requirements, it will establish an associated plan of
how both internal and external users interact with the new system, how the computer architecture topology

will be implemented, and where computer assets will be located. Addresses security goals, risks, levels of
authority, procedures for addressing security breaches, and other details impacting system security.

II. Security Policies
A security policy consists of many specific policies. The following are some examples that might be
required for the project (note that this is just an example list):

• Identification and Authentication Policy
• Encryption Policy
• Awareness and Education Policy
• Password Policy
• Remote Access Policy
• Database Access Policy
• Appropriate Use Policy

Each policy will be structured similar to the following:

Statement of Purpose
Provide a brief statement that explains why the policy is necessary.

Scope
Provide a description of the policy’s applicability.

Glossary
List any definitions or explanations that will assist the reader in fully understanding the policy.

Policy
The actual policy statement that explains the rules the policy will implement and various roles and
responsibilities.

III. Related Documents
List related information (and provide links) that will assist a reader in understanding any relevant
background information that is useful for this project.

IV. Document Revision History

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

[Project Name] Requirements Specification

[Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
The requirements document specifies the services that the system will provide and the constraints under
which the system must operate.

II. Functional Requirements
Enumerate all functional requirements (see glossary) in this section. It is generally a good idea to organize
the functional requirements according to the modules into which the system has been decomposed by the
system architect. Don't forget to provide traceability information such as where the requirement originated
and a unique identifier, what the priority is, and a definition of different priority levels.

Example:

V.1. Communication with Server.

V.1.1.

The system shall be able to communicate with the Zephyr server.

Description: Messages, location of other users, and class subscriptions must all be handled
through communication with the server.

Origin: Use cases III.2.1., III.2.2., III.2.5., III.2.12., III.2.13., III.2.14., and III.2.15. Customer
interview from November 11, 2000.

Priority: 2

III. Nonfunctional Requirements
Enumerate all nonfunctional requirements (see glossary) in this section. Note that in eCommerce systems,
privacy and security requirements are extremely important. The next section of this document will contain
all of these requirements, but it is worth mentioning them here as nonfunctional requirements. Again, it is
best to organize the nonfunctional requirements according to the modules into which the system has been
decomposed by the system architect. Don't forget to provide traceability information such as where the
requirement originated and a unique identifier, what the priority is, and a definition of different priority
levels.

Example:

VI.1. Timing

VI.1.1.

WindowGrams sent by WinZephyr shall be received at the destination in an amount of
time comparable to Unix Zephyr.

Description: The time to receive a WindowGram is described as nearly instantaneous.
Messages consisting of 200 characters (roughly three lines of text) shall be sent to and
received from the server in an average of two seconds.

Origin: Zephyr on Athena Manual.

Priority: 3

IV. Security and Privacy Requirements
Due to the sensitive nature of many software systems, security and privacy requirements (see glossary)
must be highlighted and enforced. Enumerate security and privacy requirements in this section. Don’t
forget to provide traceability information such as where the requirements originated and a unique identifier,
what the priority is, and a definition of different priority levels. Phrase as you do nonfunctional
requirements.

V. Requirements Traceability Matrix
Provide a cross-reference matrix showing related requirements as shown in the example below. Please note
that some software engineering tools will generate a traceability matrix such as this for you; thus, this
section may not be applicable for your project.

Is dependent on requirement
Req1 Req2 Req3 Req4

Req1 X
Req2
Req3 X

Requirement

Req4 X

VI. Development and Target Platforms
Describe in full detail the expected development and target platforms including software/hardware types,
versions, etc...

VII. Document Revision History

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

[Project Name] Design Specification

[Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
 This document sets forth the description of the software solution that meets user’s requirements within the
constraints of the NCSU eCommerce Practicum environment. The design document recounts ‘how’ the
software will work and details the software architecture as well as the conceptual and technical design for
the system. Includes description of components as well as data structure and data flows.

II. System Overview
Provide an overview of the system in this section, detailing the subsystems and modules of your system
design. Add a brief subsystem and module overview to this section. Include a diagram showing the system
structure.

III. Design Description
This section presents the architectural design (see glossary) of your system.

Data Flow/Structure
Describe the important data flow paths of your design and provide a diagram of the flow of data.

Software Structure
A diagram should be included in this section to show the architectural design of your system. The
diagram must show the relationship among the subsystems and modules of your system and
should provide a hierarchy for control and processing. Remember that "architectural design"
includes discussion of data and control flow.

IV. Subsystem and Module Specification
Specify the design for each subsystem and module in your software system. All functions should be
described in detail. (Detail means providing a brief description of the subsystem and more detailed
information about the modules including a processing narrative, a description of the interface(s) associated
with this module, references to other modules used by this module, any data structure internal to the
module, and any additional information (comments, restrictions, or limitations) about the module. Feel free
to use diagrams in this section to help describe the subsystems/modules.

V. File Structure and Global Data
Describe any information pertaining to database requirements and the types of data that will reside in the
database. (Identify data, describe organization of data, specify types of data, note any constraints or
valid/invalid ranges of data and any other information you might deem important. This data might be data
maintained in a file, database, or in common memory.)

VI. Interface Design
Human-Machine Interface Specification

For example: GUI (graphical user interface) designs

Human-Machine Interface Design Rules
Rules that guide you in the creation of your Interface Design to maintain consistency.

External Interface Design
Interfaces to External Data
Interfaces to External Systems or Devices

Internal Interface Design Rules
Rules that specify how modules, functions, methods, etc. interface with other modules, functions,
or methods.

VII. Requirements Cross Reference
List any additional/changed requirements that are identified during the design process. Also provide a cross
reference of design to the requirements in the requirements document to show that all the requirements are
being met by your design. Discuss any requirements that are not fulfilled by the design.

VIII. Document Revision History:

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

[Project Name] Review/Risk Meeting Agenda Document

[Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
This document provides ordered list of topics that must be discussed during the review/risk meeting held at
the beginning of each evolutionary cycle. Each item addressed during the meeting and the resulting
mitigation strategies are documented in the resulting meeting minutes.

II. Meeting Topics

Review
A brief description of the tasks that each individual completed during the previous cycle is given,
along with a description of what tasks he or she faces at the present and in the future cycle.
Problems that the individuals encountered during the past cycle are also reviewed. The purpose of
this review is to keep all group members motivated, make sure that all are aware that their efforts
will not go unnoticed by the group, and to give the entire team a sense of what each person is
doing and how the project is progressing. Also, during the review, the group measures its progress
of how well it has handled the risks placed under a mitigation strategy from the last risk meeting.
While documentation of the reviews is not necessary, the project plan must reflect the status of the
project as it exists as provided in the reviews.

Compare newly generated requirements with already established requirements and policies
As a group, hold an inspection of the newly generated requirements (especially those generated by
the customer). Discuss the feasibility of the requirements. Do they conflict with existing
requirements, existing policies (security, privacy, governmental), or other newly-generated
requirements? If so, mark this as a risk that must be negotiated and mitigated.

Define the risks and problems associated with the project
Derive an initial risk (see glossary) list from a brainstorming session, knowing that risks may
come from the system developers, users, application domain, problem domain, computer system,
and/or the development environment.

Update the risk list at the beginning of each prototyping cycle with new risks that the group may
be facing. Pay close attention to risks that are created when the customer significantly adds or
modifies requirements in such a way that the functionality of the system will drastically change
from what was previously agreed. (This is known as ‘functionality creep’). This means that the
group should review all added and modified requirements to determine if functionality creep is a
risk that the team is facing.

Evaluate these risks to derive their consequences
This process is subjective. Some areas of consequence may fall from deteriorated social relations,
process problems, product defects, and/or exceeded resource limits.

Assign priorities to the risks to find which risks must be emphasized and mitigated.
Negotiate the severity and the probability of each risk on a scale from a low 1 to a high 5. The
severity and probability values should be multiplied together to form each risk’s score. The higher
the product, the more high-risk the issue.

Complete resolution strategies for risks of which there is the most concern.
Choose the (top four or five) higher-risk issues and develop mitigation strategies for those issues.
Strategies may fall from the areas of improving social, organizational, and technical setting of the
project; developing a pilot prototype; providing different options; or limiting prototype size,
among others. Documentation of these strategies must be maintained.

In particular, it may be necessary to negotiate requirements changes with the customer to mitigate
requirements creep risks as mentioned above. You might relax the schedule, increase your
allowed cost, reduce the system quality, add resources, or reduce the scope by ignoring those
requirements that do not make sense from a development standpoint. This is a negotiation process
that must take place between the developers and the customer if you face the risk of functionality
creep.

[Project Name] Test Plan

[Document Version Number] Project Team:
 [Date] [Name] [Role]

[Name] [Role]
 Document Author(s): [Name] [Role]

[Name] [Name] [Role]
[Name] [Role]

 Project Sponsor:
[Name]

I. Introduction
 This document details the testing process, items to be tested, testing schedule and test recording
procedures. This serves as the plan for testing all software artifacts as well as the reporting of test results.

II. Test Items
Describe items and features to be tested and those not requiring testing (and why).

III. Approach for Testing
Specify the major activities, techniques and tools which will be employed to test each feature.

• Provide sufficient detail to facilitate estimation of project scheduling, costs, etc.
• Specify techniques that will be used to assess how comprehensive testing and enumerate test

completion criteria.
• Specify techniques used to trace requirements.

IV. Pass / Fail Criteria
Specify the pass / fail criteria for each test.

V. Testing Deliverables
Specify the planned testing deliverables which may include:

• Test Design Specification
• Test Case Specification
• Test Procedure Specification
• Test Log
• Test Incident Report
• Test Summary Report
• Test Input and Output Data

VI. Environmental Requirements
Specify the environmental needs for conducting tests:

• Hardware, communications and system software, other supplies, etc.
• Level of security
• Testing tools

VII. Staffing
Specify testing responsibilities, staffing and training needs.

VIII. Schedule
Specify testing schedule.

IX. Risks and Contingencies
Specify any potential risks and plans for mitigating, addressing and/or resolving those risks.

X. Approvals
List any approvals / signatures required to sign off on test results.

XI. Document Revision History:

Version File version number.
Name(s) Name of individual(s) responsible for the change.
Date Date of change.
Change Description Description of the changes made to the file.

Glossary

The following definitions were taken from Software Engineering, 5th edition, 1995, by Ian Sommerville unless
otherwise denoted by *. Definitions marked with * contain sources included with the definitions.

architectural design – The initial design process of identifying an application’s sub-systems and establishing a
framework for sub-system control and communication.

configuration management – The process which controls the changes made to a system and manages the different
versions of the evolving software product.

quality assurance / SQA – The establishment of organizational procedures and standards which lead to high-quality
software.

nonfunctional requirement – A constraint placed on the system or on the development process.

functional requirement – A requirement that describes a system service or function.

*privacy requirement – Requirement that focuses on the privacy aspects of the application.

*security requirement – Requirement that focuses on the security aspects of the application.

*evolutionary prototyping – a process in which a prototype ultimately becomes the operational system and where
some parts of the system may be re-designed and re-coded using a more formal approach. (from
http://www.doc.mmu.ac.uk/STAFF/E.Ferneley/SAD/T23/proto.htm)

Waterfall model – A software development model containing the phases of requirements definition, system and
software design, implementation and unit testing, integration and system testing, and operation and
maintenance in which the process ‘cascades’ from one phase to another.

*Capability Maturity Model (CMM) -- A five-level framework for how an organization matures its software
process from chaotic processes to mature, discipline software process. (from
http://sern.ucalgary.ca/~wangyu/SENG/621/presentation/wuw/tsld020.htm)

*eCommerce -- Conducting business online

spiral model – A software development model that has its basis in explicitly recognized risk. The model takes the
form of a spiral in which each loop in the spiral represents a management-defined phase of the software
process; and each loop in the spiral is split into the four sectors of objective setting, risk assessment and
reduction, development and validation, and planning.

throw-away prototyping – A development activity in which the objective of the evolutionary development process
is to understand the customer’s requirements by concentrating on experimenting with the parts of the
customer requirements which are poorly understood.

project plan – A plan, drawn up at the start of a project, which should be used as the driver for the project. This
plan is not static but must be modified as the project progresses and better information becomes available.

*business plan – A plan which helps to place the project in a market context and demonstrate the outlook,
usefulness, and growth of demand for the project.

*(chief) architect -- Lead technical person on team; understands documents and overall organization of system;
leads programming effort; sees the big picture.

risk – Informally, something which can go wrong. Risk is a consequence of inadequate information; therefore risks
are resolved by initiating some actions which discover information that reduces uncertainty.

*extreme programming – (XP) is a pragmatic approach to program development that emphasizes business results
first and takes an incremental, get-something-started approach to building the product, using continual
testing and revision. (from http://iroi.seu.edu.cn/books/whatis/xp.htm)

*Gantt chart -- A horizontal bar chart that graphically displays the time relationships between the different tasks in
a project. (from http://www.eng.uci.edu/~ghubbard/mae189/gantt.html)

PERT chart – A sophisticated form of activity chart in which pessimistic, likely, and optimistic estimates are made
for each task in a software project.

