Selecting Subgoals using Deep Learning in Minecraft: A Preliminary Report

Dave Bonnano¹, Mark Roberts², Leslie Smith³, & David W. Aha³

¹Naval Research Laboratory, Code 5557; Washington, DC
²NRC Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC
³Naval Research Laboratory, Code 5514; Washington, DC
{david.bonanno,mark.roberts.ctr,leslie.smith,david.aha}@nrl.navy.mil

Presenter: Mark “Mak” Roberts
http://makro.ink

Research Sponsored by NRL
Alex's Goal-Task Network

- Complete Obstacle Course
- Gather Resources
- Survive

- Stay Full
- Defend

Alex
Desirable Research Properties

- Open & uncertain world
- Limitless goals
- Inherent tradeoffs
- Long reward sequences
- Multi-player and multi-agent
- Assistive agents
- Easy to abstract planning and decision making
Alex’s Goal-Task Network

Controller: Serializes actions and disregards unsafe movement
Tradeoffs during execution

Get the diamonds on left! Avoid the zombies on the left!
How do I choose subgoals during execution?

Goal Reasoning using Goal Lifecycle + Goal Memory

Select subgoals with Deep Learning
Outline

• Goal Reasoning in a Nutshell
• ActorSim implements Goal Reasoning Theory
 – Goal lifecycle & Refinement Strategies
 – Walk through demonstration
• Learning effective decisions for Minecraft
• Ongoing Extensions:
 – Diverse & Partial Satisfaction Planning
 – BURLAP
 – HUBO Robotic Platform (Constraint-based Planning)
ActorSim: The Actor Simulator

Goal Refinement Library
- LifeCycle
- Memory

ActorSim Core
- Common Abstractions

ActorSim Planner

ActorSim Connector
- Coordination Executive
- Team Executive(s)
- Domain Knowledge

Third Party Executives & Simulators
- MASON
- GRIM/MAGR
- Minecraft
- StarCraft
- Roomba
- ROS/Gazebo
- TBD

http://makro.ink/actorsim
ActorSim: The Actor Simulator

- Goal Refinement Library
 - LifeCycle
 - Memory

- ActorSim Core
 - Common Abstractions

- ActorSim Planner

- ActorSim Connector
 - Coordination Executive
 - Team Executive(s)
 - Domain Knowledge

- Third Party Planners

- Third Party Executives & Simulators
 - MASON
 - GRIM/MAGR
 - Minecraft
 - StarCraft
 - Roomba
 - ROS/Gazebo
 - TBD

http://makro.ink/actorsim
Online Planning

• State Transition System $\Sigma = (S, A, E, \gamma)$
 – **State**: $s \in S$
 – **Action**: $a \in A$
 – **Event**: $e \in E$
 – **Transition Function**: $\gamma: S \times (2^A \cup E) \rightarrow 2^S$

Goals are often static and provided

• Planner: $M_\Sigma \times S \times G \rightarrow \pi$
 – **Model of Σ**: M_Σ
 – **Goal**: $g \in G \subseteq S$
 – **Plan**: $\pi = [a_1, a_2, ..., a_n] \in \Pi$

• Controller: $S \times G \times \Pi \rightarrow S \times \Pi$

Nau (2007)
Technical Approach: Goal Reasoning

Goal Reasoner (GRPROCESS) manages and revises goals and their priorities

Goal Memory (M)

Sets S_g or adjusts Σ

Descriptions of Σ, s_0, and S_g

Planner

Sets

Scheduler

Expands Π or replans

Controller

Commits to $\pi \in \Pi$ or repairs

System Σ

Goals

Execution Status

Observations

Actions

Events

Goal-Task Networks (Alford, Shivashankar, Roberts, Frank, Aha, IJCAI-16)

- Hybrid Planning formalism
- Blends Hierarchical Goal Networks and Hierarchical Task Networks

Nau (2007)
Goal Reasoning in a Nutshell

Creation

Intention

Planning & Scheduling

Execution Monitoring

Goal Memory

Goal Lifecycle

FORMULATE

FORMULATED

REFORM

SELECT

SELECTED

DEFER

EXPAND

EXPANDED

REPLAN

COMMIT

COMMITTED

REPAIR

DISPATCH

ATTACHED

CONTINUE

EVALUATE

EVALUATED

RESOLVE-BY

Monitor
Goal Reasoning Theory

- Goal Reasoning Theory (*Roberts, et al., 2016, ACS*)
 - Extends Goal-Task Networks to Goal reasoning
 - Provides a clear semantics for GR processes
 - Formalizes semantics of ActorSim’s implementation

Goal State Transition System \(Z = (M, R, \gamma_{GR}) \)

\(M \) is a goal memory where \(M_{ij} \)
- \(g_i \) is the \(i^{th} \) goal \((0 < i < m) \)
- \(m_j \) is the \(j^{th} \) metric \((0 < j < n) \)

\(R \) is a set of **refinement operators**

\(\gamma_{GR} : M \times R \rightarrow M' \)
ActorSim: The Actor Simulator

http://makro.ink/actorsim
Goal Reasoning: The Goal Lifecycle

Diagram showing the goal lifecycle stages:
- Formulate
- Formulated
- Select
- Selected
- Expand
- Expanded
- Commit
- Committed
- Dispatch
- Dispatched
- Evaluate
- Evaluated
- Monitor
- Adjust
- Drop
- Finish
- Process

Stages with feedback loops:
- Reform
- Resolve-to
- Defer
- Resolve-to
- Replan
- Resolve-to
- Repair
- Resolve-to
- Continue
- Resolve-to
- Resolve-by
The Goal Lifecycle Without Error Strategies
The Goal Lifecycle For Replanning

1. **FORMULATE**
 - FORMULATED
2. **SELECT**
 - SELECTED
3. **EXPAND**
 - EXPANDED
4. **COMMIT**
 - COMMITTED
5. **DISPATCH**
 - DISPATCHED
6. **EVALUATE**
 - EVALUATED
7. **RESOLVE-BY**
8. **PROCESS**
9. **FINISH**
10. **DROP**
Alex’s Goal-Task Network

Key
- Goal
- Task
- Action

- Complete Obstacle Course
- Gather Resources
- Survive

Move To Target

- StepAroundTo
- StepTo
- StairsTo
- BridgeTo
- MineTo

Move One Block

Place Block

Mine Block

Craft Item

Eat

Hit Entity

Craft Tool

Mine Resource

Stay Full

Defend
Selecting Subgoals using Deep Learning

Selecting Subgoals using Deep Learning

Survive
- Complete Obstacle Course
- Complete Course
- Achieve at(target)
- Achieve next-closest
 - Complete Course
 - Create Course
 - Move To Target
 - Move One Block
 - Place Block
 - Mine Block
- Gather Resources
- Craft Tool
- Mine Resource
- Craft Item
- Eat
- Hit Entity
- Stay Full
- Defend
- Move To Target
- StepAroundTo
- StepTo
- StairsTo
- BridgeTo
- MineTo
- Survive
- Stay Full
- Defend

- Move One Block
- Place Block
- Mine Block
Goal Reasoning Walkthrough

- Complete Course
 - Create Course
 - Achieve at (target)
 - Achieve next-closest

Diagram:

1. **FORMULATE**
 - FORMULATED
2. **SELECT**
 - SELECTED
3. **EXPAND**
 - EXPANDED
4. **COMMIT**
 - COMMITTED
5. **DISPATCH**
 - DISPATCHED
6. **EVALUATE**
 - EVALUATED

Processes:
- PROCESS
- FINISH
- DROP

Resolve-by:
Goal Reasoning Walkthrough

Goal Memory (formulated goals)

Unformulated Expansions
Goal Reasoning Walkthrough

Goal Memory (formulated goals)
- Complete Course
 - Achieve at(target)

Unformulated Expansions

Diagram:
- FORMULATE
 - FORMULATED
 - SELECT
 - SELECTED
 - EXPAND
 - EXPANDED
 - COMMIT
 - COMMITTED
 - DISPATCH
 - DISPATCHED
 - EVALUATE
 - EVALUATED
 - RESOLVE-BY
 - PROCESS
 - FINISH
 - DROP
Goal Reasoning Walkthrough

Goal Memory (formulated goals)

Complete Course

Achieve at(target)

Achieve next-closest

Unformulated Expansions

- FORMULATE
 - FORMULATED
- SELECT
 - SELECTED
- EXPAND
 - EXPANDED
- COMMIT
 - COMMITTED
- DISPATCH
 - DISPATCHED
- EVALUATE
 - EVALUATED
- RESOLVE-BY
- PROCESS
- FINISH
- DROP
Goal Reasoning Walkthrough

Goal Memory (formulated goals)

- Complete Course
- Achieve at(target)
- Achieve next-closest

Unformulated Expansions
Goal Reasoning Walkthrough

Goal Memory (formulated goals)

- Complete Course
- Achieve at(target)
- Achieve next-closest

Unformulated Expansions
Goal Reasoning Walkthrough

Goal Memory (formulated goals)

Complete Course

Achieve at(target)

Unformulated Expansions
Goal Reasoning Walkthrough

Goal Memory (formulated goals)

- Complete Course
- Achieve at(target)
- Achieve next-closest

Unformulated Expansions
Goal Reasoning Walkthrough

Goal Memory (formulated goals)
- Complete Course
- Achieve at(target)
- Achieve next-closest

Unformulated Expansions
Goal Reasoning Walkthrough

Goal Memory (formulated goals)

- Complete Course
- Achieve at (target)
- Achieve next-closest

Unformulated Expansions

FORMULATE

FORMULATED

SELECT

SELECTED

EXPAND

EXPANDED

COMMIT

COMMITTED

DISPATCH

EVALUATE

EVALUATED

RESOLVE-BY

FINISH

DROP

PROCESS
Goal Memory (formulated goals)

Complete Course

Achieve at(target)

Goal Reasoning Walkthrough

Unformulated Expansions
Goal Reasoning Walkthrough

Goal Memory (formulated goals)
- Complete Course
- Achieve at(target)

Unformulated Expansions
Goal Reasoning Walkthrough

Goal Memory (formulated goals)

Unformulated Expansions
Goal Reasoning Walkthrough

Goal Memory (formulated goals)

- Complete Course

Unformulated Expansions

FORMULATE

FORMULATED

SELECT

SELECTED

EXPAND

EXPANDED

REPLAN

COMMIT

COMMITTED

DISPATCH

DISPATCHED

EVALUATE

EVALUATED

RESOLVE-BY

PROCESS

FINISH

DROP
Goal Reasoning Walkthrough

Goal Memory (formulated goals)

Unformulated Expansions
Video Removed to decrease disk size
ActorSim: The Actor Simulator

- Goal Refinement Library
 - LifeCycle
 - Memory
- ActorSim Core
 - Common Abstractions
- ActorSim Planner
- ActorSim Connector
 - Coordination Executive
 - Team Executive(s)
 - Domain Knowledge
- Third Party Executives & Simulators
 - MASON
 - GRIM/MAGR
 - Minecraft
 - StarCraft
 - Roomba
 - ROS/Gazebo
 - TBD

Experimental Setup

- **Obstacle Course**
 - Lava, Pond, Short/Tall Wall, Pillar, Empty, Stairs, Arch, Comb

- **Capture Expert Traces (Upper Bound)**
 - Four actions: Step, Stairs, Bridge, Mine
 - Observe local state to choose best subgoal
 - Collect (screenshot, action-chosen) pairs

- **Deep Learning of Classification Task**
 - AlexNet Architecture
 - Lowered learning rates for 7 layers
 - Replaced final layer
 - Learned using FlickrStyle solver weights & iterations
Data Capture

• Screen capture from behind agent
• 10 training courses with random sections (~13K frames)
 – 9 courses of 100 sections from 9 angles as in figure
 – 1 course of 500 random sections manipulated angles
• 1 testing course (892 useable frames)
 – 100 sections with manipulated angles
Training & Testing

• Equalized instances to 348 frames in 4 action classes
 – 80% (278) selected from each class for training
 – 20% (70) selected from each class for validation
 – Training and validation data shuffled

• Training Cost
 – Trained on a Tesla K40
 – Completed 1M iterations in less than 10 hours

• Testing data from final course run
Results

- Achieved 92% accuracy on training data
- Quickly reached best values within an hour
- Achieved 87% (777/892) on testing data
Ongoing research in Deep Learning

• Challenge: occlusion of blocks by character
 – Add recursive structure to network
• Challenge: reward signal for reinforcement learning
 – Obtain reward from high-level goals
• Challenge: maintaining separate policies for tasks
 – Apply hierarchical approaches
• Challenge: current network is separate from ActorSim
 – Integrate learned network into ActorSim
Ongoing research in ActorSim

Challenge in long-life actors: How to focus learning effort?

A perpetual learner directs its own curricula to continually:
- learn new tasks,
- revise known tasks, or
- halt learning on tasks it has already mastered.

• Automated Planning
 – Diverse Planning (with M. Floyd)
 – Partial Satisfaction Planning (with P. Bevan)

• Reinforcement Learning
 – BURLAP (MacGlashan et al.)

• Foreign Disaster Relief (Johnson et al., 2016, ACS)
 – Goal Reasoning with Information Measures
ActorSim Toolkit

- **ActorSim**: Minecraft
- **Goal Reasoning Theory**
- **Future Directions**
 - GTN Planning
 - Deep Learning
 - Reinforcement Learning

Video Removed to decrease disk size

More Details:
Dave Bonanno or Mark “Mak” Roberts
ActorSim: http://makro.ink/actorsim
{david.bonanno,mark.roberts.ctr}@nrl.navy.mil