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Abstract

Microsoft Kinect can be used for computationally
inexpensive acquisition of skeleton tracking in real
time. For human activity recognition, it appears to
provide an opportunity for researchers to achieve
good performance at low cost. However, two issues
still remain. Firstly, the Kinect skeleton tracker
often captures unnatural skeleton poses, such as
discontinuous and vibrated motions, in the pres-
ence of self-occlusion. Secondly, there is still a
requirement for anyone wishing to understand hu-
man behavior to develop high-level features instead
of making direct use of a 3D skeleton pose. To
this end, we propose a method that is composed of
two parts. The first part is to improve the Kinect
skeleton under self-occlusion by using deep recur-
rent neural networks. The second part is to extract
features by evaluating the importance of each sub-
sequence of trajectories using a complexity-based
measure.

1 Introduction

For human activity recognition, there are two main ap-
proaches depending on the characteristics of features [Yao
et al., 2011]. The first is the pose-based approach and the
second is the appearance-based approach. Pose-based ap-
proaches are based on the features that are derived from ar-
ticulated 3D joint data, while appearance-based approaches
are based on the features that can be extracted from video
data without explicit human body modeling. Recently, sig-
nificant successes of Deep Convolutional Neural Networks
(ConvNets) on various computer-vision tasks, such as image
recognition [Krizhevsky et al., 2012], segmentation [Noh et
al., 2015], detection [Sermanet et al., 2013] have been ob-
served. Therefore, some researchers have attempted to apply
ConvNets to appearance-based methods. However, in this pa-
per, we focus on the pose-based approaches and investigate
a different way to use deep learning techniques for activity
recognition.

Pose-based approaches interpret human behavior as a se-
quence of skeleton poses. An optical motion-capture system
is one of the most popular devices for obtaining 3D joint
trajectories, and it has an advantage in the sense that the
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tracked 3D skeleton poses are reliable with respect to view-
point change. However, this system is expensive, and signif-
icant spatial constraints are involved, such as a large set-up
in the surrounding environment. A practical alternative is to
use a sequence of images captured from monocular or stereo
cameras. However, this requires modeling of the human body
and developing an extraction algorithm for human poses un-
der realistic imaging conditions, which is an inherently diffi-
cult task.

Recently, the Microsoft Kinect RGBD sensor has been
widely used thanks to its cheap price and relatively good res-
olution, frame rate, accuracy, etc. Kinect not only provides
inexpensive 3D depth data, but also enables one to obtain
3D human skeleton poses easily using the built-in skeleton
tracker. The use of a Kinect sensor provides an opportunity
for pose-based researchers to achieve good performance with
low cost and less effort. However, although Kinect track-
ers can achieve a considerable human body tracking perfor-
mance, they often capture unnatural skeleton poses, such as
discontinuous and vibrated motions, in the presence of self-
occlusion. This is a common problem among most vision-
based sensing systems, and it can lead subsequently to the
poor performance of activity recognition.

Another issue for understanding human behavior is that
those who want to classify such behavior are required to de-
velop sophisticated features. Much of the earlier work in this
area used the skeletal trajectories themselves to represent and
recognize human activity. The joint trajectories are used di-
rectly as inputs for classifiers, such as the conditional random
field, hidden Markov models (HMMs), support vector ma-
chines (SVMs). A direct comparison of 3D skeleton poses in
space and time is not suitable for attaining good recognition
accuracy. This is because semantically similar behaviors may
not necessarily imply a numerically similar joint trajectory.
Instead, discriminative features are required that are extracted
from a static pose or a short sequence of poses.

Recently, deep neural networks that are trained using an
end-to-end learning procedure have gained much attention for
their ability to solve various machine-learning problems, in-
cluding object recognition [Krizhevsky et al., 2012], seman-
tic segmentation [Noh et al., 2015], caption generation [Xu
et al., 2015], robotic manipulation [Levine et al., 2015], etc.
This is due largely to the inherent properties of deep neural
networks. However, to the best of our knowledge, there is



no end-to-end deep learning model to achieve promising per-
formance in pose-based activity recognition. This is because
most deep learning models require a considerable amount of
labeled training data. With a limited number of such data,
training a complex model can result in serious overfitting. In-
deed, it is extremely difficult to construct an activity recogni-
tion dataset that has numerous class labels.

Therefore, in this paper, we restrict the use of deep learn-
ing for improving 3D human poses captured by the Kinect
skeleton tracker to those cases for which we can easily ob-
tain a large number of labeled training data. As mentioned
earlier, this is not sufficient to produce a considerable recog-
nition accuracy. Human actions can be efficiently represented
as a set of a small number of subsequences of those im-
proved skeleton trajectories. In this sense, we developed a
complexity-based subsequence of the time-series clustering
(STSC) method to extract discriminating features. Specifi-
cally, a time-series complexity measure is used to evaluate
the importance of each subsequence. The selected impor-
tant subsequences are then clustered to construct motion fea-
tures for the effective representation of the activities. For the
classification of human activity, multivariate Gaussian hidden
Markov models (HMMs) are employed. To generate observa-
tions for the HMMs, the motion features described above are
computed from each joint and they are concatenated. The
combined features are then transformed to an observation in
the reduced Euclidean space.

2 Related Work

A joint trajectory that is captured from a particular human
activity can be represented as a 4-D XYZT space-time vol-
ume, where the 3-dimensional (XYZ) points correspond to
the joint positions. There are mainly three popular devices
for extracting a skeleton pose: multi-camera motion capture
(MoCap) systems, monocular or stereo cameras, and Kinect.
As mentioned before, some approaches use the trajectories
themselves to represent and recognize the actions directly
[Yang et al., 1997; Oliver et al., 2002; Wang and Mori, 2009].
However, the majority of studies extract meaningful patterns
from the trajectories. This supports the hypothesis that even
though the skeleton pose itself contains high-level informa-
tion for activity recognition, the extraction of features from
the raw joint-trajectory data might provide an opportunity to
achieve better performance.

The approaches are classified into two groups by means of
the ways to construct meaningful features. One approach for
recognizing human motions relies on extracting features from
each frame, and it considers an action as a sequence of fea-
ture vectors. The other approach employs more descriptive
features from a joint trajectory. The histogram of 3D joint lo-
cations [Xia et al., 2012] leads on to the histogram of spher-
ical coordinates of the joint positions in a coordinate system
that uses the hip joint as the origin. The sequence of the most
informative joints [Ofli er al., 2014] gives the top 6 according
to the variance of joint angle and angular velocity, and allows
the construction of feature vectors with the features of these
most informative joints. Eigenjoint [Yang and Tian, 2012]
employs the position differences between joints to represent

human actions. It computes the position difference of all the
pairs of joints within one frame, the joints of two consecu-
tive frames, and the joints of one frame and the initial frame,
to capture the spatial and temporal configuration of human
poses.

As mentioned earlier, deep learning techniques are mostly
applied in appearance-based approaches [Wang er al., 2015;
Simonyan and Zisserman, 2014; Karpathy et al., 2014]. To
overcome the problem of overfitting with a small number
of annotated training data, they transform the task of action
recognition into one of image classification. The static ap-
pearance by itself is a useful clue, since some actions are
strongly associated with particular objects and static poses.
However, such an approach does not consider the motion in-
formation that is encoded in multiple contiguous frames. To
make up for this weakness, most studies propose a particu-
lar method to effectively incorporate the motion information.
ConvNet operates at each time step of the motion trajectory,
effectively performing action recognition; the classification
results from the whole video frame are then combined for the
final decision. In fact, these approaches produce a relatively
competitive recognition accuracy.

3 Improving the Kinect Skeleton Using Deep
Recurrent Neural Networks

The first part of the proposed model is to improve the joint
position and velocity of the Kinect skeleton using super-
vised learning, and it is implemented based on our prior work
[Park et al., 2016]. The inputs for the supervised learning
are sequences of 3D positions or velocities obtained by the
Kinect skeleton tracker. The targets are sequences of skele-
ton poses captured using a commercial optical maker-based
motion capture system. In our method, a deep recurrent neu-
ral network is employed to solve the regression problem, in
which two deep recurrent neural networks are trained sep-
arately for refining the positions and velocities of the body
joints. In this Section, we will briefly describe a deep recur-
rent neural network, and we present the details of how to train
such a network.

3.1 Deep Recurrent Neural Network

A recurrent neural network (RNN) [Williams and Hinton,
1986] is a neural network that simulates a discrete-time dy-
namical system; it is a powerful model for sequential data.
A conventional RNN is constructed by defining the transition
function and the output function as

hy = ¢, (Whe—y +U'x,) (1)
Y. = 60 (V'hy), 2)

where ¢y,, ¢,, X, ¥, and h, are respectively a state transition
function, an output function, an input, an output, a hidden
state, and W, U and V are the transition, input and output
matrices, in that order. It is usual to use a nonlinear function
such as a logistic sigmoid function or a hyperbolic tangent
function for ¢y,.

RNNS are inherently deep in time, since their hidden state
is a function of all previous hidden states. However, the po-
tential weakness for RNNs is that RNNs lack hierarchical



processing of the input in space. From this perspective view,
deep recurrent neural networks has recently gained signifi-
cant attention to many researchers. As with feedforward deep
neural networks have multiple nonlinear layers between input
and output, a recurrent network can be considered as a deep
recurrent neural network (DRNNSs) if the network has more
than one hidden layers. We can now consider two schemes
of DRNNs. One has L hidden layer with temporal connec-
tion only at the [-th layer and the other has L hidden layer
with full temporal connections (called stacked RNN). Based
on empirical evaluation on our datasets, we have chosen the
former scheme. The values of the output units are computed
by linear activation.

Because skeleton tracking is an inherently dynamic pro-
cess, it seems natural to consider DRNNs as a model for
supervised learning. As with most related researcher, we
considered the two most popular deep learning techniques,
dropout and Rectified Linear Units (ReLU) [Krizhevsky et
al., 2012] for our initial training of DRNNs. We used a Rec-
tified Linear Unit (ReLU) as the nonlinear activation function
for all units in the hidden layers. Unfortunately, dropout does
not work well with RNNs unlike with feedforward deep neu-
ral networks. Although we applied dropout carefully to the
DRNNs with our datasets according to the method proposed
by [Zaremba et al., 2014], we found that it leads to diver-
gence.

3.2 Details of Training Two DRNNs

In the following discussion, we will refer to the DRNNs for
improving the joint position and velocity of a skeleton as
pDRNN and vDRNN, respectively. pDRNN and vDRNN
have five layers, three of which are hidden and the remain-
ing two are the input and output, respectively. The number of
units in the input and output layers is 48, because the num-
ber of joints to be refined is 16 and each joint is composed
of 3 (%, y and z) coordinates. Kinect v2 supports 25 joints,
and 16 joints are used in our method. These are as follows:
spinebase, spinemid, neck, shoulderleft, elbowleft, wristleft,
shoulderright, elbowright, wristright, hipleft, kneeleft, an-
kleleft, footleft, hipright, kneeright, ankleright, footright, and
spineshoulder.

Among the full 25 joints, some joints, such as thumbleft
and thumbright are tracked in a very unstable manner. In ad-
dition, some joints are not supported by the motion capture
system. As a result, head, handleft, handright, handtipleft,
thumbleft, handtipright, thumbright, footleft and footright
were excluded in our method.

The temporal length of the training data for pPDRNN is 7
frames. In the training phase, the inputs are the joint posi-
tions of the Kinect skeleton (denoted by z), and the targets
are the joints tracked using the motion capture system. The
temporal length of the training data for vDRNN is 15 frames.
The training data for vDRNN are the velocities of the im-
proved skeleton poses, which are defined by vy =z, — Z;_1.
We denote the input for vDRNN as v. We denote the input
for vDRNN as z. The outputs for pPDRNN and vDRNN are
denoted by z and v, respectively. The L-BFGS optimization
algorithm is used to train the two networks from random ini-
tializations, and the sum-of-squared errors are used for the

objective functions.

3.3 Integration based on Kalman Filtering

In the Kalman filter framework, the dynamics and the mea-
surements are modeled by the following discrete-time state-
space model:

Xt = FexXe—1 + Gyve + wy 3)
z; = Hyx; + uy. 4

where x, z, v, F, G and H are the state vector, measurement
vector, input control vector, state transition matrix, input tran-
sition matrix, and measurement matrix, respectively. It is as-
sumed that w is the process noise vector, which has a zero
mean but with a covariance matrix Q = E{ww” }, and u is
the measurement noise vector that also has zero mean with
a covariance matrix R = E{uu”}. In this work, since we
consider an uncorrelated covariance matrix, Q and R become
diagonal matrices. In our experiment, F, G and H were set
equal to the identity matrix, and hence the prediction model
becomes x; = Xx;_1 + v;. Matrices Q and R were determined
by using the validation dataset.

The state x; that we are required to estimate is the true
skeleton pose, and its dimension is 48 as mentioned earlier.
Our contribution is to replace the measurement vector z; with
the improved body joints z, and the input control vector v;
with the enhanced velocities v;. Therefore, the j-th row and

7-th column of R and Q are determined by computing (zf M_

z7) and (v7™ — &), respectively. Here, z9"M is the j-th
component of the i-th training data obtained from the motion

capture system, and v] M represents the true velocity of the
j-th component of the ¢-th frame. In our methods, xo was set
to equal Zy. The details are described in [Park ef al., 2016].

4 Complexity-based Motion Features

4.1 Complexity-based Subsequence of Time-series
Clustering

Subsequence of time-series clustering (STSC) is a well-
known pattern discovery technique that uses time-series data.
In STSC, the time series data are represented as a set of sub-
sequences, and all the subsequences of the time series are
extracted using a sliding window. Next, the extracted sub-
sequences are grouped into clusters using a clustering algo-
rithm such as k-means. The obtained cluster centers can be
used as motion features. Unfortunately, it has been demon-
strated that a typical STSC algorithms produces meaningless
results [Keogh and Lin, 2005]. Averaging of all subsequences
extracted by a sliding window generates some form of sine
waves irrespective of the original shape of the pattern in the
input data.

By evaluating the meaningfulness of subsequences and by
selectively using these subsequences, the STSC algorithms
can produce more meaningful results. In previous work
[Kwon and Suh, 2014], a complexity-based STSC method
was proposed. In the research, predictive information [Grass-
berger, 19861, which is a type of time-series complexity mea-
sure, is employed to evaluate the meaningfulness of a sub-
sequence in a joint trajectory. Intuitively, a meaningful sub-
sequence requires a considerable amount of information to
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Figure 1: An example of time-series complexity.

describe itself, whereas a meaningless subsequence requires
less information. A complexity measure can be used for eval-
uating the meaningfulness of a subsequence because the com-
plexity can be viewed as a measure of the amount of useful
information in a set of data [Rissanen, 2007].

Formally, given a multidimensional time series X of length
T, a subsequence S, of X is a sampling of length w < T of
contiguous posrtlons from X, that is, S, = Xp, Xptw—1 for
1 <p <m—w+1. Figure 1 illustrates a time series and two
of its subsequences S; and So. Intuitively, S; seems to be
more complex than Sy because S; requires more information
to encode it than does So. This difference can be measured
using mutual information based on information theory.

Given a subsequence of a multidimensional time series

S = sj,...,S;+m, the complexity is modeled as the mutual
information between the past and future, and is given by

C(Sl) = I(Sf(wt; S{uture)’ (5)
where  SP** Siy s Sitm/2—1s S{umre =
Sitm/2s > Sitm—1, and I(SP*t; S{“twe) is the mu-
tual information between SF**" and S{ uture,

Based on the complexity measure, only important subse-
quences can be used for clustering. Algorithm 1 shows the
proposed complexity-based STSC method. Here, the length
of the sliding window, w, and complexity threshold, 7 are
dependent on the dataset. Before clustering, each important
subsequence is normalized to have a zero mean by

s=s/w)y s ©)

4.2 Subspace mapping of cluster centers

In earlier work [Kwon and Suh, 2014], it was shown that
a complexity-based STSC is a useful way to discover clus-
ters of meaningful subsequences. However, this method has
the disadvantage that the recognition performance is sensi-
tive to the cluster size. To overcome this problem, we have
employed subspace mapping, whereby cluster centers are
mapped into a Euclidean subspace preserving pairwise dis-
tances.

After the clustering of subsequences, we can obtain a set of
cluster centers, X = {x1,...,Xx}, where K is the number
of clusters and x; contains the data points of the ith cluster
center. The distance between two cluster centers ¢ and j is
defined as

4y = (xi — x5)" (% — x;) @)
We want to find transformed data points r; for all ¢ in a re-
duced space preserving the pairwise distances of cluster cen-
ters. This problem is given as an optimization problem by

Y™ —argminzz x X; —Y; yj] 8)

=1 j=1

Algorithm 1 Complexity-based STSC (D, 7, w)
e D: adataset of N time series, D = {X1,..., Xn}.
o 7: the threshold value for important subsequences.

e w: the length of subsequences.

e X': aset of high complexity-valued subsequences.

. X=0

2: for j =1to N do > every time series in D
3: T:tl,...,tm<—Dj

4: fori=1tom —w+ 1do > all subsequences in T’
5: S(*ti,...,tﬁ,m

6: X + zero_mean_normalize(S) > as in (6)

subsequences in 7'

7 score = I(XPaSt; XFuture)
8: if score > 7 then B> store only important
subsequences
9: X+~ XUX
10: end if
11: end for
12: end for

13: cluster_centers < k-means_clustering(X)
14: return cluster_centers

As shown in [Kruskal and Wish, 1978], the transformed
data points Y* can be obtained by eigenvalue decomposi-
tion of the Gram matrix of X, where G = XTX. By us-
ing eigenvalue decomposition, the Gram matrix is given by
G = XTX = QAQ". By using the top n eigenvectors of
the Gram matrix and their respective eigenvalues, the matrix
of transformed data points, Y* is given by Y* = QA'/2. The
gram matrix is computed by using pairwise distances as

gij = (xi —x1)(x; —x1) = (d; di;)/2 )
As a result, the coordinates of cluster centers in a reduced
subspace can be obtained. Figure 2 shows the overall pro-
cesses of complexity-based STSC and subspace mapping.

4.3 Action classification

For the classification of human activity, we employed multidi-
mensional Hidden Markov Models (HMMs) with continuous
observation probability, where the probability density func-
tion is given by a multivariate Gaussian distribution. A set of
parameters of the HMM for the ith class and the jth joint is
defined as )\] = {HJ AJ, wl, }, where I, A, p, and X are
the initial state probabilities, the state transition probabilities,
the mean vector of Gaussian observation distribution, and the
covariance matrix, respectively.

An observation sequence for each HMM is given by using
the complexity-based STSC method and subspace-mapping
of cluster centers. _

Let 77 = {aJ,y],2} be jth 3D joint position at time
t. The skeletal trajectory of a human motion is given as

Tf, Tg, ..., 7. The procedure to generate the observation se-
quences is as follows:
1. Obtain a subsequence by sliding windows as
J oJ J ;
$1,89, ST 115 Where w s the length of a
sliding window, and s/ = 77, 77 T 1s oo Tw—1
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generation.

2. Normalize the subsequence, sg , using the zero-mean
normalization in (6).

3. Find the nearest complexity-based codewords k with a
given subsequence s;.

4. Obtain the reduced coordinates of the k-th cluster center
— ¢17 ¢2, ceey ¢m

5. Observation: o] = {¢1, ¢2, ..., P, Sz, Sy, 5.}, wWhere
S, is the mean value of subsequence s, .

The probability of an observation sequence o given a class

1 1s given as
P (olclass = i) = P (o[A}) P (o|A}) ... P (o|A]). (10)

5 Experiments

5.1 Experimental Setup

We used Microsoft Kinect v2 in our experimental configura-
tion. The proposed algorithm has not been evaluated on pub-
lic datasets, such as MSRAction3D, MSRDailyActivity3D.
Instead, we created a dataset composed of 16 activity classes.
The activities are draw O, draw X, forward punch, hammer,

hand clap, high arm wave, high throw, horizontal wave, run-
ning, side punch, tennis serve, tennis swing, two hand wave,
crossing arm & leg, turning and sitting & crossing leg. Some
activities, such as crossing arms & legs, sitting & crossing
leg, consist of a large amount of severe self-occlusion poses,
while two hand wave and side punch, for instance, include
a small number of self-occlusion poses. Each activity class
was repeated 20 times. Every activity starts with a standing
pose, and an activity is composed of approximately 100~200
frames. Most activities in our dataset are similar to activities
in the MSRAction3D dataset. Here, it is noted that we gener-
ate our dataset due to the following concern. To enable a deep
recurrent neural network to improve the whole-skeleton tra-
jectories performed by various people in the public datasets, a
great number of training data captured by a number of differ-
ent people is required, because people in the public datasets
have different body shapes. Indeed, it is quite a difficult task
to be carried out by a small-sized laboratory.

Every activity except furning was performed while facing
the Kinect sensors. For the cases of turning , the minimum
and maximum orientations relative to the Kinect sensor were
-90° and 90°, respectively. We did not allow the Kinect sen-
sor to look at the performer’s back because the Kinect skele-
ton tracker cannot distinguish between front and back. The
average distance from the Kinect sensor to the human was
approximately 3m, and the height of the Kinect above the
ground plane was 130cm.

All skeleton trajectories in the dataset were refined using
the proposed method described in Section 3, The original
skeleton trajectories were also given for the classification task
for the purpose of comparison.

Setup for Improving Kinect Skeleton

For supervised learning and evaluation, we employed an Op-
tiTrack motion capture system to provide a set of ground-
truth trajectories. The Kinect sensor and the motion capture
system tracked skeleton poses simultaneously with recoding
capturing time, hence we can construct sets of input and target
data pairs. The Kinect sensor and the motion capture system
were extrinsically calibrated using a least-squares solution.
In addition, we collected training and validation datasets for
improving the Kinect skeleton. The training and validation
datasets are composed of free movements that a human can
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perform, in which behaviors that are similar to the 16 activ-
ity classes are included as well. The validation dataset was
employed to decide upon the structure of the DRNNs, such
as the number of layers, the number of hidden neurons and
the temporal length of the training data. The variances of
the covariance matrices R and Q used in the Kalman filter-
ing were determined using the validation dataset as well. The
numbers of frames in the training and validation datasets are
17,820 and 5,799 respectively. To construct a dataset to train
the deep recurrent neural networks, we sampled sets of data
sequences with a temporal stride of 1.

Setup for Activity Recognition

To determine a suitable number of clusters of the complexity-
based STSC method, we use the Bayesian Information Cri-
terion (BIC) statistics as described in [Pelleg et al., ]. BIC
is also used for the number of states in HMMs. The size of
the sliding window w and the complexity threshold 7 are de-
termined by cross-validation over the training dataset. In the
experiment, we use the parameter settings of w = 36 and
7 = —1.0. For each class of activity, ten actions are used for
training, and the rest are used for testing.

5.2 Experimental Results

Average Position Error of Skeletal Trajectory

We compared the Kalman filter-based proposed method, de-
noted by kF, and the Kinect skeleton, referred to as KS. Fig-
ure 3 shows the average position error (APE) of each activity
class, and the APE of all the test data. It is observed that
kF achieves significantly lower APEs than KS over all ac-
tivity classes. The APE of all the test data produced by KS
is 0.072, whereas kF achieves considerable improvement by
decreasing the APE to 0.026.

Activity Recognition

We tested our method on the 16 types of activity classes. As a
baseline method for action recognition, a multivariate HMMs
model using relative joint features [Lv and Nevatia, 2006]
is used. A comparison of the recognition accuracy of the
proposed method with the accuracies of the baseline meth-
ods is shown in Figure 4. Without refinement of the skeletal
joint trajectory, the accuracy of the proposed C-STSC feature
achieved 70.0%, while the accuracy of the relative joint fea-
ture achieved 59.4%. From this result, it can be seen that the
C-STSC feature improves the recognition performance. After
refinement of the skeletal joint trajectory using the proposed
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Figure 5: A confusion matrix on the dataset.

method, the accuracies of HMMs with C-STSC features and
HMMs with relative joint features are both improved. The re-
sult for C-STSC features is 86.5%, and the result for relative
joint features is 75.6%. For all the skeletal joint trajectories,
the accuracies of the C-STSC feature are higher than the oth-
ers. The confusion matrix for the result using the C-STSC
feature with a refined joint trajectory is illustrated in Figure 5.

6 Conclusions

In this paper, we proposed an improved skeleton tracker and
complexity-based motion features for human activity recog-
nition. Our main contributions are to improve the joint posi-
tion and velocity of the Kinect skeleton, even in the presence
of self-occlusion, and then to combine them in a Kalman filter
framework. For this, we employed supervised learning with
a deep recurrent neural network. Another contribution is the
use of a time-series complexity measure for finding impor-
tant subsequences by using a sliding window on the skeletal
trajectories. Furthermore, highly descriptive features can be
obtained from the dataset by clustering the important subse-
quences based on a high measure of complexity.

We showed that the average position error of motion trajec-
tories captured from Kinect is significantly improved by us-
ing the proposed method, even when occlusion exists among
the skeletal joints. We also showed that the proposed skele-
ton tracking and the complexity-based motion feature both
enhance the accuracy of human activity recognition.
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