721
An Adversary-Centric Behavior Modeling of DDoS Attacks
An Wang, Aziz Mohaisen and Songqing Chen
George Mason University, SUNY Buffalo, George Mason University

DDoS attacks are one of the most persistent threats on the Internet today. The evolution of DDoS attacks calls for an in-depth analysis of those attacks. A better understanding of the attackers’ behavior can provide insights to unveil patterns and strategies utilized by attackers. The prior art on the attackers’ behavior analysis often falls in two aspects: it assumes that adversaries are static, and makes certain simplifying assumptions on their behavior, which often are not supported by real attack data. In this paper, we take a data-driven approach to designing and validating three DDoS attack models from temporal (e.g., attack magnitudes), spatial (e.g., attacker origin), and spatiotemporal (e.g., attack inter-launching time) perspectives. We design these models based on the analysis of traces consisting of more than 50,000 verified DDoS attacks from industrial mitigation operations. Each model is also validated by testing its effectiveness in accurately predicting future DDoS attacks. Comparisons against simple intuitive models further show that our models can more accurately capture the essential features of DDoS attacks.