SOM-TC: Self-organizing map for Hierarchical Trajectory Clustering
Pranita Dewan, Raghu Ganti and Mudhakar Srivatsa
IBM T J Watson Research Center, IBM T J Watson Research Center, IBM T J Watson Research Center

Trajectory clustering techniques help discover interesting insights from moving object data, including common routes for walking, vehicles, anomalous sub-trajectories, etc. Existing trajectory clustering techniques fail to take in to account the uncertainty present in location data. In this paper, we investigate the problem of clustering trajectory data and propose a novel algorithm for clustering similar full and sub-trajectories together while modeling uncertainty in this data. We describe the necessary pre-processing techniques for clustering trajectory data, namely techniques to discretize raw location data using Possible World semantics to capture the inherent uncertainty in location data, and to segment full trajectories in to meaningful sub-trajectories. As a baseline, we extend the well known Kmeans algorithm to cluster trajectory data. We then describe and evaluate a new trajectory clustering algorithm, SOM-TC (Self-Organizing Map Based Trajectory Clustering), that is inspired from the self-organizing map technique and is at least 4x faster than the baseline K-means and current density based clustering approaches.