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Abstract

Designers of applications of collaborative distributed Virtual Environments must

account for the impairment of the network connecting them and its detrimental

effects on user performance. Based upon analysis and classification of exist-

ing latency compensation techniques, this thesis introduces a novel amelioration

method in the form of a two-tier predictor-estimator framework. The technique

is variability-aware due to its proactive sender-side prediction of a pose a variable

time into the future. The prediction interval required is estimated online based

on current and past network delay characteristics. This latency estimate is sub-

sequently used by a Kalman Filter-based predictor to replace the measurement

event with a predicted pose that matches the event’s arrival time at the receiving

workstation. The compensation technique was evaluated in a simulation through

an offline playback of real head motion data and network delay traces collected

under a variety of real network conditions. The experimental results indicate

that the variability-aware approach significantly outperforms the one based on

state-of-the-art assumption of a constant system delay.
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1 Introduction

Virtual Environments (VE) allow users to gain a sense of immersion into syn-

thetic reality, populated with manipulatable objects and traversable environ-

ments, making it possible to experience a modeled world from an egocentric

perspective [Sta02]. Certain applications leverage the ability to collaborate in a

virtual environment (CVE), whereby the synthetic reality is shared by more than

one individual. In the common case, when collaborating parties brought together

by a CVE are, in reality, geographically separated, the virtual environment is said

to be distributed and takes upon the name of a Distributed Interactive Virtual

Environment (DIVE).

DIVE technology has matured over the years from a science fiction inspired

idea to research prototypes confined to a few well-financed institutions, to broader

application in the industry, to, finally, the mass market. With recent exponen-

tial advances in CPU and graphics processing unit (GPU) performance as well
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as memory throughput, Virtual Reality (VR) simulations have begun infiltrating

our everyday lives. There have been successful applications of Collaborative

Virtual Environment technology in E-commerce [MH99], tele-learning, video-

conferencing, industrial engineering training, pilot virtual flight practice, game

industry, tele-surgery operation and a variety of other applications. Yet, with

the ever-evolving graphical appeal of synthetically generated environments, pho-

torealism of their virtual inhabitants, and realistic physics simulation engines,

a whole array of open research problems inherent to the distributed nature of

DIVEs persists.

1.1 Research Issues

Capps and Stotts identify three major problem areas [CS97]:

a. content generation and management

b. architecture

c. network delivery

The issue of network delivery is fundamental for any distributed simulation

allowing geographically separated operators to share a common environment and,

particularly, interact and cooperate in it. The interactive component of DIVEs
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calls for ways of maintaining a consistent state of the shared environment as

well as the objects and autonomous or human-operated avatars that inhabit it.

Non-deterministic or unknown movements or other state changes must be com-

municated to other DIVE nodes explicitly or implicitly (e.g. via commands that

bring those changes about). The communication requirement for state consis-

tency maintenance unveils three facets of the network delivery issue.

First, delivery of network-routed messages is clearly subject to the reliability of

the underlying network medium. It may or may not be a critical issue, depending

on the nature and the type of messages lost. Naturally, some research has been

done to introduce frameworks that differentiate between important messages and

those, whose loss the intended recipient is less sensitive to. The delivery of the

former can be guaranteed by the use of connection-oriented protocols such as

TCP, while the latter can be sent via lower-overhead connectionless channels,

such as offered by the light-weight UDP protocol.

Second, depending on the number of participants and the level of collabora-

tion, network bandwidth may be a limiting factor as well. An increase in the

number of remote users translates into a rise in the amount of information trans-

mission required to maintain some global state, not to mention a consistent one.

It leads directly to the network bandwidth consumption increase that may quite
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easily surpass levels physically allowed by dial-up modems, for instance.

Finally, network propagation delay, defined as the amount of time it takes for

a packet dispatched by the sender to reach the receiver’s computer at the appli-

cation layer level, is, perhaps, the most persistent research issue of all. Indeed,

according to Patterson, latency lags bandwidth and “improves by no more than

a factor of 1.2 to 1.4” for a double growth in bandwidth and exhibits a tendency

to continue this trend in the foreseeable future [Pat04].

What makes matters worse is that we can propose solutions to the first two

network delivery concerns, which may be at the expense of an increase in delay.

We can introduce reliability to network communication, for example, by using

TCP, but it is well-understood that connection-oriented protocols operate at the

expense of network delay. We may improve bandwidth by introducing end-point

queuing buffers [Pat04], but that too would introduce additional queuing latency.

Ultimately, there’s no hope to completely eliminate network delay due to the

speed of light limiting signal propagation through physical media. Reportedly, it

amounts to about 0.1s between Europe and Australia [PW02b].

For these reasons, combating network delay in DIVEs is an open research area

that became the focus of this thesis as well.
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1.2 Motivation

The motivation to focus our research on combating the network latency is man-

ifold. First, it’s a major contributor to end-to-end system delay in networked

virtual environments. End-to-end latency leads to a number of serious anomalies,

especially when it comes to intimate collaboration or interaction of geographically

distributed participants.

It takes a toll on human performance in cooperative tele-operation tasks, for

instance. Park and Kenyon [PK99] looked at how the performance in cooperative

manipulation of objects degrades as a function of increased network propagation

delay. In their task, one of the users controlled a virtual rod, while the other

manipulated a virtual ring. Their common goal was defined to transfer the ring

from one end of the rod to the other with the minimum number of object collisions

and as quickly as possible. The authors concluded that participants adopt a

move-and-wait strategy to synchronize their movements, consequently increasing

the total time required to complete the task. Park and Kenyon [PK99] as well

as other similar research studies [AZWS04] converge on a consistent conclusion

that, in addition to increased time-to-completion, task accuracy also suffers the

most in longer latency experiment setups.

Furthermore, perceptual instability of visual worlds as a result of end-to-end

5



system latency has been shown to be the major cause of what has become known

as cybersickness [JJL00]. Cybersickness is a term that has been defined in a

variety of ways, but in general, it refers to “sensations of nausea, oculomotor

disturbances, disorientation, and other adverse effects associated with VE expo-

sure” [Sta02]. It is a very undesirable effect, especially in networked VE systems

designed for flight simulation and combat training, which inherently require pro-

longed exposure to DIVEs. In fact, a pilot grounding policy is in effect at many

air force bases to prevent VE exposure aftereffects from having an adverse and,

possibly, fatal effect on pilot’s performance in control of a real aircraft [JJL00]. It

is, therefore, difficult to underestimate the importance of eliminating or amelio-

rating the effect of primary causes of cybersickness. Network delay reduction and

compensation techniques play a vital role in improving VE perceptual stability.

Finally, end-to-end latency has been shown to result in causal anomalies in

multi-operator DIVEs, such as multiplayer games. A classic example is a “dead

man shooting” [Mau00]. In a three-person scenario with players A, B, and C,

player A can shoot B, but before B’s workstation receives this launched pro-

jectile information, player B may successfully terminate C. Close range combat

significantly exacerbates the problem, as the time of projectile flight is decreased,

making it more probable for network propagation delay to exceed it. Even such
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attempts to compensate as event prediction based on an avatar’s posture or

limb/body movement, for instance, can be completely ineffective due to the non-

determinism in the avatar’s behavior. Consider a sniper simply looking through

the scope without taking a shot. He has every indication of the intention to

generate the bullet shot event, but it is completely unpredictable when, if at all,

it will actually occur.

In summary, end-to-end latency significantly degrades human performance

and serves as a major cause of oscillopsia, defined by Allison et al as referring to

the perception that the visual world appears to swim about or oscillate in space

[AHJ+01]. The impairment due to latency, further, contributes to the sensation

of cybersickness and causal anomalies in multi-operator DIVEs as well as has a

deleterious effect on the perceived consistency of the virtual world. However, in

addition to exhibiting significant latency, networks used for DIVEs often feature

significant variation in that latency as well. Yet, it is our belief that network delay

compensation has been approached with a certain disregard to latency variation

(a.k.a. jitter), despite existing evidence of its importance [PK99], [AZWS04].

Park and Kenyon [PK99] conclude that network latency jitter disarms com-

pensatory prediction techniques otherwise available for known constant delay

systems. From human performance perspective, it becomes difficult, if not im-
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possible, to adapt to display lag. Intermediate to advanced operators are usually

able to adapt to constant delay and use prediction to excel in target-tracking

tasks despite latency. Its variability, however, renders operators’ implicit predic-

tion significantly less accurate, naturally causing their extrapolation heuristic to

overshoot or undershoot along the target’s actual trajectory — all of this due

to the continuous change in the prediction interval. Such evidence builds up

intuition for variability-aware latency compensation techniques.

1.3 Our Approach

I have argued that participating dynamic entities need to exchange their move-

ment or state change information with other relevant participating nodes. It is

worth noting that a dynamic entity’s state is a fairly general concept and may

extend beyond an avatar’s kinematic characteristics (such as position, linear and

angular velocity or acceleration) to dynamic or, perhaps, even thermodynamic

properties. Examples of the former could be an amount of force exerted and its

direction that would be most useful for tele-haptic DIVEs, whereas the latter

could be the atmospheric temperature and pressure in a flight simulator. Within

the scope of this thesis, however, we will constrain ourselves to a discussion of

kinematic information, commonly referred to as a pose.
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A worthwhile detour into the status quo of current compensation techniques

will illustrate a number of advantages we offer. Figure 1.1 depicts what con-

Figure 1.1: client-server VE application cycle: no prediction

stitutes a single cycle of a client-server type VE application without prediction.

ts and tc represent the flow of time, respectively, on the server and client plat-

forms according to a global world clock. Current pose transmission incurs net-

work transport delay tdk, and the client receives what is believed to reflect server-
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controlled entity’s pose at time tk + tdk, whereas, in fact, the pose is “current” as

of t = tk.

Our approach to network delay amelioration rests on a relatively intuitive

idea: why broadcast an entity’s current pose if it is destined to arrive outdated?

We leverage participating entities’ exclusive self-knowledge and access to their

motion profile, event history, and a possible physical model of their motion tra-

jectory. This allows us to prevent VE state inconsistency by having VE entities

exchange their predicted pose instead of the currently measured one. Such ap-

proach departs from currently wide-spread way of correcting for the VE state

inconsistencies due to network latency a posteriori. It conceptually modifies the

cycle illustrated above through the introduction of pose and network delay esti-

mator framework, as can be seen from figure 1.2.

Upon such modifications, client receives a pose calculated for t = tk + t̂dk at t =

tk + tdk. Even with a modest performance of network delay estimation, we expect

t̂dk ≈ tdk, in which case the predicted pose will most closely match the current pose

of the server-controlled entity, conditioned upon the pose estimator performance.

It is accomplished through the introduction of a variability-aware framework,

coupling a user pose predictor with network delay estimator to determine the

prediction interval required for the former in order to produce the estimate of the
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Figure 1.2: client-server VE application cycle: with prediction
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future pose at the time of arrival.

Ultimately, our contribution is formed by a two-tier adaptive predictor frame-

work offering the only proactive approach to the network latency amelioration

sensitive to the variability in the network delay. Furthermore, we decouple the

implementations of user pose and network delay predictors. That ensures modu-

larity of our developmental efforts and, thus, enables the scientific community to

plug and test numerous different prediction techniques for both estimators within

our framework.

1.4 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 presents an

overview of research work related to this thesis. Chapters 3 and 4 provide a

detailed treatment of the framework’s pose estimation layer, focusing on position

smoothing and prediction followed by the discussion of estimation and prediction

for head orientation. The network delay estimation layer is detailed in chapter

5, while chapter 6 describes the simulation put together for the purposes of eval-

uating our approach to network delay amelioration. This chapter highlights the

principal components of the simulator and their functionality. The results of the

comparative evaluation and their discussion are presented in chapter 7. Finally,
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chapter 8 concludes with a summary of contributions, their implications, and

possible directions of future work.
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2 Previous Work

Network delay has detrimental effects across a whole spectrum of immersive syn-

thetic reality applications, ranging from tele-haptics, where a sense of touching

remote objects is provided, to tele-operated robotics, where a robotic platform is

remotely operated by a user, to collaborative VR. Therefore, mitigating or mask-

ing system delay effects is an active research topic. The research work relevant to

the issue of delay amelioration ranges from providing evidence for the detrimental

effects of system latency, to attempts to minimize that latency and its variability,

to, finally, investigating various compensation techniques. The classification I

introduce separates methods of latency compensation into two major categories

– reactive and proactive delay amelioration. The former is characterized by pro-

viding algorithmic solutions to a problem once it has already taken place, while

the definition for the proactive methods can be borrowed from Merriam-Webster

Online as ”acting in anticipation of future problems, needs, or changes.”
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2.1 Reactive Latency Compensation

The most commonly used reactive compensation techniques derive from dead

reckoning (DR) algorithms popularized by the well-known IEEE Standard for

Distributed Interactive Simulation ([DIS96]). Dead reckoning attempts to solve

two problems simultaneously: reduce bandwidth consumption and mitigate the

effect of network delay by client-side prediction. The latter eliminates the need

for a continuous stream of pose updates from the server at the expense of the

accuracy of the pose estimated. To impose a cap on the pose misestimation,

the same extrapolator is run on the server side to ensure that the discrepancy

between its output and the real pose is under a specified threshold. When the

threshold is exceeded, the correct pose is dispatched to the client.

Dead reckoning is reactive in nature – in essence, it waits for the problem to

happen in order to correct it. Subsequent smoothing at the client side to correct

its pose estimate with the newly arrived correct pose only intensifies the reactive

nature of this network delay compensation technique.

Furthermore, DR requires a smart client with computational abilities to per-

form pose prediction for all remotely operated entities, such as soldier avatars or

simulated aircraft. Access to the knowledge of adequate motion models that de-

scribe the dynamic behavior of entities whose pose is to be extrapolated becomes
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necessary as well. A need for such access, depending on the application, may

raise some concerns of privacy or access to intellectual property. Finally, security

clearance may also be required to have access to the code that programmatically

reveals the movement characteristics of the aircraft or other combat vehicles. The

knowledge of differential equations that describe their motion may reveal certain

intricacies of their control systems, whose details are typically safely guarded.

Despite its disadvantages, approaches based on dead reckoning continue to

have a strong presence in the gaming industry (e.g. [Aro97], [PW02b]). Network

games represent an important area of research, since they are one of the most

wide-spread examples of a Distributed Virtual Environment, where many inhab-

itants share the same virtual world and interact with each other on the regular

basis. Furthermore, in the game world, masking the effects of latency is especially

important due to the variety in the computer hardware and network connection

speeds that the game engine is expected to accommodate. Consequently, some

prominent work has been done in this area, particularly, by the developers at

Valve Software, known for its Half-Life and Half-Life 2 game engines ([Ber01]).

The approach taken to latency amelioration is basically a combination of dead

reckoning and client-side interpolation. In addition to the reactive nature of the

former, the latter actually increases the overall system latency, which Bernier duly
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acknowledges in pointing out that this is a tradeoff between the visual smoothness

of the simulation and the magnitude of delay.

The article also mentions the adoption of dead reckoning smoothing tech-

nique, referred to as time-warping in the game development realm, in order to

reactively compensate for the differences in client-side prediction and the author-

itative server pose update.

Aggarwal et al [ABK+04] were among a number of researchers found to ques-

tion the suitability of dead reckoning for latency compensation. The authors con-

ducted experiments to evaluate traditional dead reckoning approaches to sharing

participants’ states. Even relatively small network delays had substantial ob-

jective and subjective effects on the quality of the gaming experience that was

attributed to perceptible inaccuracies in the real and rendered trajectories of user

avatars in a shared VE. A simple extension to the traditional DR proposed was

demonstrated to reduce the discrepancy at the expense of the need to synchronize

local clocks for network delay calculation. The performance evaluation of both

the traditional and timestamp-augmented DR-based compensation was carried

out with an assumption of fixed amounts of delay.

Hikichi et al [HMA+02] addressed the effect of dead reckoning compensation

on shared virtual environments augmented with a sense of touch. According to

17



[AZWS04], touch may be the most affected sensory modality when it comes to

the ”mismatch between motor action and simulated sensory feedback.” Due to

the tight coupling between input and output and the high update rate required,

compensating for the latency in tele-haptic DVEs is particularly important. Hi-

kichi et al, however, illustrated the unsuitability of dead reckoning for tele-haptic

applications, especially, in the presence of latency jitter. The authors hypothe-

sized a direct relationship between a relative increase in the number of threshold

violations and the quality of DR compensation. The number of times a correct

pose had to be dispatched due to the violation of the threshold was shown to rise

when using dead reckoning under variable network conditions.

2.2 Proactive Latency Compensation

In light of the disadvantages presented for the reactive methods of latency ame-

lioration, predictive compensation comes across as ”the only viable approach to

mitigating the consequences of delay” ([JAE00a]). Predictive compensation shifts

focus to the class of proactive compensation techniques, which I further differen-

tiate into the category of delay jitter insensitive and variability-aware methods

of latency amelioration. The former category is the state-of-the-art approach at

the time of writing, as proactive delay amelioration methods found in the liter-
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ature assume, explicitly or implicitly, a constant delay. This manifests itself in

a variety of ways, from setting up experiments with simulated constant delay to

merely assuming stability in the delay in the extrapolation equations.

Wu & Ouhyoung, for instance, have done extensive work on predictive head

tracking in [WO94], [WO00], and [WO95], where they compared relative per-

formance improvements of the Grey System (GS) approach over Kalman Filter

based prediction and simple linear extrapolation. The authors claim improve-

ments in both the running time and prediction accuracy using the GS-based

compensation method. The comparative evaluation, however, is carried out by

fixing the prediction interval to constant values in [WO95], while [WO94] reports

performing latency measurements for virtual objects of various complexity, which

the authors later used as a lookup table for their grey system theory based head

motion predictor.

Akatsuka and Bekey proposed a method of latency compensation with an Eu-

ler angle based head orientation model ([AB98]). In evaluation of their technique,

the authors go as far as to derive a linear relationship between the end-to-end

system delay and the complexity of a rendered scene based on three virtual mod-

els used. It is apparent, however, that, for a given scene or a scene of a given

complexity, the delay is assumed to be constant. Specifically, the proposed com-
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pensation technique was evaluated for prediction intervals set to 75 and 150ms.

Rather than measuring objective compensation performance, Jae Jung et al

([JAE00b]) focus on subjective perceptual performance evaluation. The goal in

their work is to keep both the effect of latency and prediction artifacts under the

threshold of the perceptible. The authors propose their own implementation of a

Kalman Filter (KF) based head motion predictor with redefined cost functions for

optimization of KF noise parameters. A constant prediction interval is adopted

again, however, in the evaluation of their compensation technique’s effect on hu-

man perception. The consequences of added high-frequency noise and overshoot

as a result of predictive compensation were evaluated, with a look-ahead predic-

tion interval of 50ms in [JAE00a] and for constant latencies ranging from 0 to

100ms [JAE00b].

Finally, in the discussion of the suitability of client-side prediction for games

([PW02b]), Pantel and Wolf evaluated the performance of seven different predic-

tion schemes for simulated delay values of 100 and 200 milliseconds. In doing so,

they too adopted the assumption of a constant delay in an attempt to ameliorate

it.

Azuma’s work is most notable for its apparent departure from the constant

delay assumption through the derivation of closed form predictors that accept
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the interval of prediction (or, equivalently, a timestamp in the near future) as an

argument (see [Azu95], [AB94]). In his technique, head position and orientation

were predicted at the time the renderer rasterizes the image to be displayed. Both

the head tracker and the graphics engine were part of the same local platform

with tight control on and the knowledge of various parts of the end-to-end system

delay. Nevertheless, Azuma’s latency compensation technique can be classified

as variability aware, due to the ability of the predictor to generate a head pose

an arbitrary amount of time into the future. The implementation of a clock

synchronization mechanism and timestamp acquisition throughout the various

portions of the tracker-to-the-screen pipeline enabled Azuma to deterministically

compute the prediction interval required ([AB94]).

The variability-aware latency compensation framework offered in this thesis

deviates from the work of Azuma and Bishop on three principal points. First, my

framework operates in the context of distributed applications, inherently involv-

ing more than one workstation networked together. Secondly, due to the nature

of public switched networks, they yield little, if any, control over the propagation

delay incurred when traversing them. Finally, the network latency is significantly

more variable compared to local processing delays, and the extent of variability

can easily change within the running time of a single experiment or user session.
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Handshake Interactive (HIT) has commercialized a similar compensation tech-

nique for tele-haptics ([AZWS04]). Both Azuma and HIT propose for the tracked

user information to be substituted with its prediction just before the event takes

effect. In Azuma’s system it happens just prior to its use by the renderer, while

in the HIT system, the prediction occurs immediately before the event takes ef-

fect on a remote force-feedback device. Furthermore, the interval of prediction

is deterministically computed in the context of tight control over various parts

of the black box the event has to traverse. Indeed, HIT determines the inter-

val by measuring the network delay incurred by the packet at the receiving end.

This requires tight synchronization of the event initiator and receiver, such as

clock synchronization as well as client-side knowledge of the prediction model.

The framework proposed in this thesis renders such requirements unnecessary by

performing prediction at the sending end.

Azuma’s later work on the frequency-domain analysis of head-motion predic-

tion ([AB95]) highlighted the sensitivity of prediction to the magnitude of the

prediction interval. The study theoretically evaluated two classes of head-motion

prediction, specifically exploring their performance changes with variation of sys-

tem parameters. One such parameter of interest is the interval of prediction. In

fact, the error in the predicted signal was derived as a function of the latter,
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allowing researchers to compare various predictors w.r.t. their error characteris-

tics for specified intervals of time. The utility of Azuma’s theoretical framework,

however, is inherently limited to researchers who use prediction in either constant

system delay environments or with the assumption of a constant delay, which is

the de facto approach to proactive latency masking at the time of writing.

LaViola offers an entire testbed for the empirical evaluation of predictor per-

formance (e.g. [LaV03b], [LaV03a], [LaV03d]). Both Azuma’s theoretical frame-

work and the predictive tracking algorithm testbed force a choice of a specific

value for the latency for the evaluation to take place. This is especially true in

the latter case, where the graphical user interface restricts the choice to a constant

prediction interval.

A unifying theme bringing the state-of-the-art research work of Azuma, HIT,

and LaViola on proactive delay compensation together is the continued influence

of constant delay prediction assumption. The two-tier compensation framework

presented in this thesis breaks away from this premise and offers a simulation

environment where multiple head motion datasets can be tested against multiple

network delay traces, each of which exhibits latency jitter.

Finally, latency reduction is not to be overlooked. Minimization of the end-

to-end system delay has been identified as an obvious first step by many authors,
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most notably Azuma & Bishop ([AB94]), Wu & Ouhyoung ([WO94]), and Jae

Jung et al ([JAE00b]). Azuma’s work featured using a low-overhead operating

system called VxWorks as well as direct communication paths between the tracker

and the graphics engine. Wu & Ouhyoung point out that the implementation of

a predictor itself incurs latency and, thus, in their work on the grey system the-

ory based prediction, focus both on the minimization of predictor’s running time

and compensation for the remaining delay. Similarly to Azuma, Jung et al re-

duce latency through the provision of a dedicated communication path between

the sensor and a stand-alone software process responsible for further dispatching

of sensor events to other simulation processes. Their choice of the C program-

ming language is also undoubtedly motivated by the optimization considerations

leading to end-to-end system delay reduction.
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3 Pose Estimation - Position

3.1 Background and Intuition

Generally, virtual environments contain objects of two major categories: entities

that have no direct relationship to the objects in the real world and, thus, are

synthetically generated, and those that do. In order to properly render the virtual

representations of the latter, it is necessary to track the pose of the real-world

objects they represent. Even when the entire VE is synthetic and exhibits no

dynamic behavior, tracking a user’s pose may still be desirable to ensure a certain

level of interactivity with the VE, suitable for such applications as architectural

walkthroughs and scientific visualization, to name a few.

The pose is typically defined as a combination of a tracked object’s position

in the motion space (two- and three-dimensional Eucledian spaces being most

widespread) and its orientation. Pose measurements are subject to a variety of

problems of both static and dynamic nature, such as high-frequency noise, mis-
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calibration of a tracking device, and system delay. The measurements obtained,

therefore, cannot be used directly to influence the recomputation of the virtual

embodiment of a tracked object (usually referred to as an avatar) or the view

of a VE an operator gets as a result of her translational and rotational motion.

Hence the need for pose estimation.

Ψ

Θ

φ

φ

X

Y

Z

px

py

pz

x’

y’
z’

Figure 3.1: Position and orientation in Eucledian 3D space
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Regarding pose representation, a rigid untethered object in 3D Eucledian

space has six degrees of freedom, making it possible to translate along each of the

3 axes (X, Y, Z) as well as to rotate about them. Cartesian coordinates in a frame

of reference defined by independent orthogonal axes are typically used to represent

position. Orientation is more complicated and several candidate representations

are common depending on application and mathematical apparatus chosen.

State vector notation is typically adopted to keep track of the pose. In ad-

dition to position and orientation concatenated together to form this vector,

object’s velocity and acceleration may also be of interest for dynamic modeling

of the system. The state vector may, therefore, grow to as many as 18 elements

(e.g. [Wel96]). For computational convenience, the dynamic information, there-

fore, was broken down into three component-wise positional state vectors and

one for the orientation.

The physical system consisting of the user’s tracked body parts, the mus-

cles setting them in motion, and the tracking device producing measurements of

their pose can be modeled as a system with the input in the form of a white

noise disturbance function and a pose as its output. Figure 3.2 illustrates the

model employed for the positional component of the pose. It reveals the separate

treatment of individual positional components, yielding a state vector of only

27



Figure 3.2: Process model for positional component of the system

two elements ~X =









x1

x2









=









x

ẋ









. A tracked object is modeled as a system

that accepts white noise as input, performing integration on it to obtain linear

velocity. Position is then derived by integrating the velocity component.

Such model calls for a system of differential equations (DE) to mathemat-

ically formulate the system’s dynamic behavior. Due to the inertia of tracked

body parts, such as a user’s head, an assumption can be introduced that linear

acceleration and even velocity will not significantly change between two consec-

utive measurements. Provided that the sampling frequency of a tracking device

is adequately large, this is a reasonable assumption to make.

3.2 Model Formulation

Due to the nature of human motion and devices typically employed to track it,

our system should be regarded as a continuous-time system sampled at discrete
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points in time. The continuous process’ governing equation below, therefore, was

chosen to formulate its dynamic behavior:

Ẋ(t) = FX(t) + Gw(t) + Lu(t) (3.1)

X here represents the state vector discussed above, while Ẋ denotes its time

derivative. w(t) is the process noise input into the system, which is assumed to be

well-behaved, and u(t) generally signifies a deterministic vector-forcing function.

Due to the absence of a deterministic control input, u is set to zero in our case.

Square matrix F is of particular importance here and is known as the system

dynamics matrix. In general, the coefficients of eq. (3.1) may vary with time,

but the time subscript has been dropped for notational convenience.

General Kalman Filter formulation is completed with a measurement equa-

tion that linearly relates the state X with a tracking measurement z through a

transformation matrix H as follows:

z = HX(t) + v

where v refers to the measurement noise.

Since the behavior of the continuous-time system modeled is observed only

at discrete points in time, we proceed to discretize the process model equation

by borrowing the difference equation solution to (3.1) from Brown and Hwang
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[BH97a]:

xk+1 = Φ(tk+1, tk)x(tk) +

∫ tk+1

tk

Φ(tk+1, τ)G(τ)w(τ)dτ (3.2)

The short form notation of the above is the familiar governing equation for dis-

crete processes:

xk+1 = Φkxk + wk

where Φk clearly serves as a transition matrix between consecutive states in time.

Intrinsic to the above transformation is an assumption that observations of sys-

tem’s state will occur at regular intervals in time:

tk+1 − tk = ∆t ≈ const ⇒ Φ(tk+1, tk) = Φk(∆t)

The plant equation introduced in its general continuous-time form is also

rewritten to reflect the discrete nature of the tracking device operation, yielding

a system of discrete-time linear equations as follows:















xk+1 = Φkxk + wk

zk = Hkxk + vk

It can be solved resulting in a well-known recursive-step algorithm summarized

in the diagram 3.3 (see [Gel74], [BH97a], [DJ00], [WB95] for derivation).

Due to a consistent observation that, for adequately small time intervals,

linear velocity undergoes insignificant change, a constant velocity model was
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adopted. The assumption of constant velocity translates into p̈x = 0 ⇒ ṗx =

const and can be written as a system of linear homogeneous differential equa-

tions:

ṗx = 0 · px + ṗx

p̈x = 0 · px + 0 · ṗx

⇔









ṗx

p̈x









=









0 1

0 0

















px

ṗx









= Fx = ẋ

which, in fact, yields a system dynamics equation in the absence of noise. To

account for white noise input into the system, the above transforms as follows:

Ẋ(t) =









ṗx

p̈x









=









0 1

0 0

















px

ṗx









+









0

1









w(t) (3.3)

Further, it can be shown that fundamental matrix Φk can be found by evalu-

ating a Taylor series expansion of matrix exponential eF∆t ([BH97a], [ZM00]):

Φk = eF∆t = I + F∆t +
(F∆t)2

2!
+

(F∆t)3

3!
+ . . . = I + F∆t =









1 ∆t

0 1









(3.4)

since, ∀n ≥ 2,









0 1

0 0









n

= 0

H is even simpler to find, since measurement z is formed to be a scalar value

equaling the corresponding component of a tracked object’s position. Matrix

H1×2 = [1 0] then satisfies the following equality:

px = H









px

ṗx









= [1 0]









px

ṗx








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3.3 Process Noise Covariance Matrix

The previous section has crystallized the building blocks of the system dynam-

ics and the measurement equations, deriving the fundamental matrix Φ and H .

Process noise covariance matrix Qk remains to be formulated and is defined as a

variance-covariance of process noise wk. Hence, Qk equals E[wkw
T
k ] by definition

and encapsulates the degree of confidence we have in our model’s proper reflec-

tion of the true underlying system behavior. There are two principal approaches

to the analytical derivation of Qk — from the definition presented or following

Zarchan’s approach [ZM00] and obtaining Qk from continuous-time matrix Q(t)

as follows:

Qk =

∫ ∆t

0

Φ(τ)QΦT (τ)dτ (3.5)

Continuous-time process noise covariance matrix Q is set by Zarchan and, sub-

sequently, by LaViola in [LaV03a] to W









0 0

0 1









, reflecting the widely accepted

assumption that most process noise enters the system at its highest derivative. It

may not be immediately clear how this assumption translates into the mentioned

expression for Q, nor whether the two approaches to Qk derivation are equivalent.

The purpose of this section is to prove their equivalence and analytically arrive

at the closed-form expression for Qk.
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3.3.1 Proof of Equivalence

Starting with the definition of Qk = E[wkw
T
k ], we substitute in the value of

wk =
∫ tk+1

tk
Φ(tk+1, τ)G(τ)w(τ)dτ based on eq. (3.2). It follows then that

Qk = E

{

[
∫ tk+1

tk

Φ(tk+1, ξ)G(ξ)w(ξ)dξ

][
∫ tk+1

tk

Φ(tk+1, η)G(η)w(η)dη

]T
}

Since the transpose of an integral is equal to the integral of the transpose, Qk

can be rewritten as follows:

Qk = E

{
∫ tk+1

tk

∫ tk+1

tk

Φ(tk+1, ξ)G(ξ)w(ξ) [Φ(tk+1, η)G(η)w(η)]T dξdη

}

Qk = E

{
∫ tk+1

tk

∫ tk+1

tk

Φ(tk+1, ξ)G(ξ)w(ξ)wT(η)GT (η)ΦT (tk+1, η)dξdη

}

Keeping in mind that the expected value of a deterministic component is that

deterministic component, we proceed to rewrite the above as

Qk =

∫ tk+1

tk

∫ tk+1

tk

E
{

Φ(tk+1, ξ)G(ξ)w(ξ)wT(η)GT (η)ΦT (tk+1, η)
}

dξdη

⇒ Qk =

∫ tk+1

tk

∫ tk+1

tk

Φ(tk+1, ξ)G(ξ)E
{

w(ξ)wT (η)
}

GT (η)ΦT (tk+1, η)dξdη (3.6)

At this point, the reader is referred to appendix A to see that the inner

expected value term actually equals to Wδ(ξ−η), where W is the power spectral

density of the white noise process. Performing this substitution, we get

Qk =

∫ tk+1

tk

[
∫ tk+1

tk

Φ(tk+1, ξ)G(ξ)Wδ(ξ − η)dξ

]

GT (η)ΦT (tk+1, η)dη
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The inner integral above readily yields itself to the sifting property of the Dirac

delta function, becoming

∫ tk+1

tk

Φ(tk+1, ξ)G(ξ)Wδ(ξ − η)dξ = Φ(tk+1, η)G(η)W

making a mental note that

ξ, η ∈ [tk; tk+1]⇒ ∃ ξ ∈ [tk; tk+1] : (ξ − η) = 0

This simplification allows us to rewrite Qk as follows:

Qk =

∫ tk+1

tk

Φ(tk+1, η)G(η)WGT (η)ΦT (tk+1, η)dη

Substituting G(η) with its value from eq. (3.3), the product of three innermost

terms becomes

G(η)WGT (η) = W









0

1









[

0 1

]

= W









0 0

0 1









= Q

which is the continuous-time process noise covariance matrix used by Zarchan

and LaViola.

⇒ Qk =

∫ tk+1

tk

Φ(tk+1, η)QΦT (tk+1, η)dη

At this point recall that for our system, the fundamental matrix Φ(tk+1, tk)

was derived as a function of the difference ∆t = tk+1 − tk under the assumption
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that ∆t ≈ const. Therefore, we rewrite the expression for Qk above to reflect

that:

⇒ Qk =

∫ tk+1

tk

Φ(tk+1 − η)QΦT (tk+1 − η)dη

Performing substitution

∣

∣

∣

∣

∣

∣

∣

∣

τ = tk+1 − η

η = tk+1 − τ

∣

∣

∣

∣

∣

∣

∣

∣

, we finally get

Qk =

∫ 0

tk+1−tk

Φ(τ)QΦT (τ)(−1)dτ =

∫ ∆t

0

Φ(τ)QΦT (τ)dτ

�

3.3.2 Qk derivation

Having established the equivalence of the two mentioned methods for Qk deriva-

tion, either can be chosen for that purpose. We’ll use eq. (3.5), substituting Φ(τ)

with the expression derived for the fundamental matrix in eq. (3.4):

Qk =

∫ ∆t

0

Φ(τ)QΦT (τ)dτ = W

∫ ∆t

0









1 τ

0 1

















0 0

0 1

















1 0

τ 1









dτ =

= W

∫ ∆t

0









τ 2 τ

τ 1









dτ = W









(∆t)3

3
(∆t)2

2

(∆t)2

2
∆t









This completes the formulation of the principal blocks for the positional

Kalman Filter.
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3.4 Positional KF Algorithm

Positional Kalman Filter recursive-step algorithm can now be summarized as

follows:

I. Initialization:

1) set state x̂0 =









x

ẋ









=









first measured position

0









2) set covariance matrix P0 =















0, ∀ i 6= j

1001, ∀ i = j















II. KF procedure

For each received kth measurement do:

1) Time update

a. compute fundamental matrix: Φk =









1 ∆t

0 1









b. compute process noise covariance matrix:

Qk = W









(∆t)3

3
(∆t)2

2

(∆t)2

2
∆t









1Large numbers are used to trust the first couple of measurements more than the model.
E.g. see [LaV03a] for KF initialization details.
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c. obtain a priori estimates of state x and covariance P

x̂−

k = Φkx̂k−1

P−

k = ΦkPk−1Φ
T
k + Qk

2) Measurement update

a. compute Kalman Gain

Kk = P−

k HT (HP−

k HT + R)−1

b. update the estimate of state

x̂k = x̂−

k + Kk(zk −Hx̂−

k )

c. update covariance P : Pk = (I −KkH)P−

k

III. KF prediction

1) set Φpred =









1 Tpred

0 1









2) xp = Φpredx̂k
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Figure 3.3: Recursive KF prediction/correction cycle
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4 Pose Estimation - Orientation

Head orientation yields itself to an even greater variety of representation than

position and subsequently dictated mathematical apparati to model it. Johnson

has a fairly recent treatment of common techniques for mathematical modeling

of rigid body orientation in CG animation [Joh03], including the coordinate ma-

trix, axis-angle, Euler angles, and the quaternion approach (see also [DKL98]).

Rodriguez, modified Rodriguez parameters, and direction cosine representations

are closely related to Euler angles (see [CM96] for their treatment), but are sel-

dom used in Virtual Reality and tracking applications. In this thesis, I use the

4D quaternion representation approach to avoid singularity problems inherent to

3D parameterizations. Quaternions are defined as hyper-complex numbers of the

form

q = q0 + iq1 + jq2 + kq3 = q0 + ~q
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where q0 is a scalar part of the quaternion and ~q — its vector part, and the

following relationship between the imaginary numbers holds:

i2 = j2 = k2 = ijk = −1

Quaternions become increasingly common in tracking applications as they form

“the minimal non-singular attitude parameterization” [CBIO04]. They offer an

intuitive geometric interpretation of rotational motion, a solution to the gim-

bal lock singularity problem, and elegant interpolation mechanisms that prove

especially useful in our statistical analysis of Extended Kalman Filter (EKF)

performance. Furthermore, they have successfully been used by Azuma [Azu95]

for the same purpose and yield a relatively simple governing differential equation.

4.1 Model Formulation

As with the positional Kalman Filter described in the previous chapter, a con-

stant velocity model is adopted, approximating a head as a rigid body with

inertia sufficient to suppress most of the high-frequency content in its motion

profile. Furthermore, it is reasonable to assume that angular velocity will remain

relatively constant during short intervals of time between tracker samples. Fi-

nally, higher order models, such as constant acceleration, are not used, as the
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tracking device does not furnish measurement data for the derivative elements of

the state.

Their advantages notwithstanding, the use of quaternions introduces non-

linearity into the model equation. A general form of non-linear governing equation

in the absence of deterministic control input is as follows:

Ẋ = f(X, t) + w(t)

and should be regarded as a generalization of eq. (3.1).

In our model, the state vector X will contain parameters responsible for keep-

ing track of orientation and angular velocity and, therefore, it is commonly

referred to as the orientation-velocity (OV) model. The orientation state is

maintained by storing all four components of the orientation quaternion q =

qw + qxi + qyj + qzk. Angular velocity is appended to the state vector on a

per-component basis, resulting in a state vector X = [qw qx qy qz w0 w1 w2]
T .

Kuipers ([Kui99]) provides an excellent and intuitive derivation of a quater-

nion derivative, giving rise to what has become the most commonly used govern-

ing differential equation for head orientation:

q̇ =
1

2
q ⊗ w (4.1)

where ⊗ represents quaternion multiplication. For quaternions p = (p0, ~p) and
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q = (q0, ~q), written as a combination of their scalar and vector parts, their product

can be shown to equal to the following:

p⊗ q = (p0q0 − ~p · ~q, p0~q + q0~p + ~p× ~q)

The quaternion product can also be rewritten as a matrix-vector multiplication, if

quaternions themselves are represented in the form of a 4D vector [q0 q1 q2 q3]
T ∈

R
4, where [q1 q2 q3]

T = ~q:

p⊗ q =

























q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0

















































p0

p1

p2

p3

























Eq. (4.1) can, therefore, be rewritten as

q̇ =
1

2

























0 −w0 −w1 −w2

w0 0 w2 −w1

w1 −w2 0 w0

w2 w1 −w0 0

















































qw

qx

qy

qz

























= M

























qw

qx

qy

qz

























(4.2)

noting that w for this differential equation is represented as a pure quaternion w =

[0 w0 w1 w2]
T . This may give a false feeling of the possibility of a homogeneous

linear ODE for our model. Indeed, rewriting the above, now with the state vector
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X instead of q, we get

Ẋ =









M 04×3

03×4 03×3









X (4.3)

Eq. (4.3) is a governing equation for the OV model in the absence of noise.

The last three rows of zeros are due to the model’s assumption of angular velocity

~w =

[

w0 w1 w2

]T

= const ⇒ ~w′ = ~0. The non-linearity becomes apparent

noting that matrix M is actually a function of angular velocity state vector

components, which cannot be factored out. With the addition of process noise

to eq. (4.3), we get the complete governing model equation:

Ẋ = f(X) + w(t)

where vector-valued f : R
7 7→ R

7 is piecewise defined as follows:






















































































































f1

f2

f3

f4

























= 1
2

























qw

qx

qy

qz

























⊗

























0

w0

w1

w2









































f5

f6

f7

















=

















0

0

0

















⇐⇒ f :

















































qw

qx

qy

qz

w0

w1

w2

















































7→

















































−1
2
w0qx − 1

2
w1qy − 1

2
w2qz

1
2
w0qw + 1

2
w2qy − 1

2
w1qz

1
2
w1qw − 1

2
w2qx + 1

2
w0qz

1
2
w2qw + 1

2
w1qx − 1

2
w0qy

0

0

0

















































Non-linearity is introduced into the measurement equation as well. Here,
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though, it’s due to the normalization of the quaternion part of the state by

function h : R
7 7→ R

4, piecewise defined as follows:
























h1

h2

h3

h4

























= Normalize(

























qw

qx

qy

qz

























) =
1

√

q2
w + q2

x + q2
y + q2

z

·

























qw

qx

qy

qz

























h establishes the relationship between the state and the tracker measurements

obtained and allows for meaningful calculation of a measurement residual through

the use of explicitly normalized unit quaternions. With the introduction of pos-

sible measurement noise into the system, the plant equation then becomes

Z = h(X) + v(t)

We end up with a system with both nonlinear dynamics and nonlinearity

in the measurement equation and need to linearize it in order to be able to

use the Kalman filtering framework introduced in the positional Kalman Fil-

ter chapter. Various methods of linearization exist, most notably, linearization

about the known nominal trajectory, as would be the case for satellites, and the

trajectory estimated online [BH97a]. The latter has come to be known as the

Extended Kalman Filter and is most applicable for head motion tracking, where

it is impossible to predict or otherwise precompute the trajectory of its motion.
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Linearization rests on the assumption that the nominal or estimated trajectory

closely approximates the real one.

4.2 Measurement Update

Brown and Hwang offer one such method of linearization by formulating the ex-

tended Kalman Filter as an extension to the linearized KF [BH97b]. Linearization

about the estimated trajectory of motion gives rise to the use of Jacobian ma-

trices F = δf
δX

∣

∣

X=X̂−

k

and H = δh
δX

∣

∣

X=X̂−

k

as a result of Taylor series expansion

approximation.

This section derives a closed-form expression for the plant equation matrix H

used in the measurement update stage of the predictive-corrective Kalman Filter

cycle. This stage calls for special emphasis in the EKF case, as it introduces an

important change in the calculation of the measurement residual, defined as the

difference between the actual measurement Zk and its predictive estimate. The

latter is computed as follows:

Ẑ−

k = HX̂−

k =
δh

δX
· X̂−

k = h(X̂−

k )

in the linear KF case, whereas the equality δh
δX
· X̂−

k = h(X̂−

k ) in general breaks

down as soon as the function h becomes non-linear. Therefore, it is important to
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emphasize that employing the KF measurement update equations verbatim for

the non-linear case will result in an erroneous update of the state. Hence, the

measurement update equations appropriate for the Extended Kalman Filter are

included here for completeness:

Kk = P−

k HT (HP−

k HT + R)−1

X̂k = X̂−

k + Kk(Zk − h(X̂−

k ))

Pk = (I −KkH)P−

k

(4.4)

This thesis is believed to be the first to expose this measurement residual com-

putation discrepancy in LaViola’s recent testbed implementation for empirical

comparison of predictive tracking algorithms [LaV03b].

H in the measurement update equations (4.4) is calculated as previously men-

tioned to be

H =
δh

δX
=

















δh1

δqw

δh1

δqx

δh1

δqy

δh1

δqz

δh1

δw0

δh1

δw1

δh1

δw2

...
...

δh4

δqw
. . . δh4

δw2

















Letting L equal |q|2 = q2
w +q2

x+q2
y +q2

z , the resulting expression for H is simplified
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to the following:

H = − 1

L3/2

























q2
w − L qwqx qwqy qwqz 0 0 0

qwqx q2
x − L qxqy qxqz 0 0 0

qwqy qxqy q2
y − L qyqz 0 0 0

qwqz qxqz qyqz q2
z − L 0 0 0

























(4.5)

A closed-form analytical expression for H puts us in a position to investigate

the severity of improper measurement residual calculation effects and, in fact, to

show that, for our model, H ·X actually equals to a zero vector:

H ·X = ~0

To take it one step further, I prove that

δh

δX

∣

∣

∣

∣

X=X̂−

k

· X̂−

k = ~0 (4.6)

even if the ordering of quaternion components is altered, as happens to be the

case in LaViola’s testbed implementation. Specifically, the scalar and vector

components are swapped, resulting in quat = [qx qy qz qw]T . Just a few lines of

Matlab code will convince the inquisitive reader that eq. (4.6) holds true:

syms w0 w1 w2 qw qx qy qz real

q=[qx qy qz qw];

state=[q w0 w1 w2];

h=q/sqrt(dot(q, q)); %normalization

H=jacobian(h’, state);

simplify(H*state’)
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Performing the above symbolic computation results in a zero vector. The

consequences of this flaw are significant, as it follows that the state update step

will correct the a priori estimate not by the weighted measurement residual, but

by the weighted measurement, which is meaningless. It casts a shadow of doubt on

a whole list of publications that build on the performance of EKF as reported by

LaViola’s predictive tracking algorithm testing suite: [JL04], [LaV03c], [LaV03a],

[LaV03d], [LaV02].

4.3 Time Update

4.3.1 State Projection

Time update equations, specifically, the a priori state estimate, require a solu-

tion to non-linear differential equation (4.3) that can be obtained numerically

employing 4th order Runge-Kutta (RK4) numerical integration [Zil97].

For the quaternion component, the right hand side of eq. (4.1) will have to be

evaluated at four different points, with the results forming a weighted additive

term as follows:

qk = qk−1 +
1

6
(k1 + 2k2 + 2k3 + k4)

To simplify notation, we form two quaternions from the components of X̂k−1 =
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[qw qx qy qz w0 w1 w2]
T
k−1 to be q = [qw qx qy qz]

T and w = [0 w0 w1 w2]
T . Any

manipulation of q and w is strictly in accordance with quaternion algebra. Then

the above ki, i = 1..4 are computed as follows:

k1 = ∆t
2
· q ⊗ w

2k2 = ∆t ·
[

q + 1
2
k1

]

⊗ w = k′

2

2k3 = ∆t ·
[

q + 1
2
k2

]

⊗ w = ∆t ·
[

q + 1
4
k′

2

]

⊗ w = k′

3

k4 = ∆t · 1
2
[q + k3]⊗ w = ∆t

2
·
[

q +
k′

3

2

]

⊗ w

(4.7)

and qk = q + 1
6
(k1 + k′

2 + k′

3 + k4). ∆t is the step size over which the integration

takes place.

The angular velocity portion of the a priori state estimate is set to its value

on the previous step, consistent with the OV model:

















w0

w1

w2

















k

=

















w0

w1

w2

















k−1

The state projection step has, thus, been established:

X̂−

k =































Numeric solution to

IVP (4.3) at t = tk subject

to X = X̂k−1 at t = tk−1































(4.8)
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4.3.2 Covariance Projection

A priori estimate of covariance matrix P−

k is found similarly to the positional KF

and is obtained as follows:

P−

k = ΦkPk−1Φ
T
k + Qk

This covariance projection step necessitates the knowledge of a fundamental ma-

trix Φk as well as the process noise covariance matrix Qk. It is possible to obtain

a closed form expression for Φk for some low-order dynamic models through

an inverse Laplace transform L−1 [(sI − F )−1] ([BH97a], [ZM00]). I, however,

remained consistent in resorting to the same Taylor series approximation of

Φk = eF∆t ≈ I + F∆t (see eq. (3.4)).

For head orientation EKF

F =
δf

δX
=

















δf1

δqw

δf1

δqx
· · · δf1

δw2

...
...

δf7

δqw

δf7

δqx
· · · δf7

δw2
















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and the resulting expression for Φk has been derived to equal to the following:

Φ =

















































1 −1
2
∆tw0 −1

2
∆tw1 −1

2
∆tw2 −1

2
∆tqx −1

2
∆tqy −1

2
∆tqz

1
2
∆tw0 1 1

2
∆tw2 −1

2
∆tw1

1
2
∆tqw −1

2
∆tqz

1
2
∆tqy

1
2
∆tw1 −1

2
∆tw2 1 1

2
∆tw0

1
2
∆tqz

1
2
∆tqw −1

2
∆tqx

1
2
∆tw2

1
2
∆tw1 −1

2
∆tw0 1 −1

2
∆tqy

1
2
∆tqx

1
2
∆tqw

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

















































(4.9)

kth subscript has been dropped for notational convenience. Φk or, rather, Fk, is

evaluated at X = X̂−

k obtained from (4.8) since we linearize about the estimated

motion trajectory as discussed in the previous section.

The process noise covariance matrix derivation is driven by the same as-

sumption as for the positional KF, namely, that most process noise enters the

model at its highest derivative. Zarchan’s approach to Qk derivation has been

shown to follow directly from the definition of Qk = E[wkw
T
k ] in section 3.3,

and, therefore, will be used for the EKF as well. Given a seven element state

vector X = [qw qx qy qz w0 w1 w2]
T , with [w0 w1 w2]

T = w denoting the highest

derivative components, the continuous-time process noise covariance matrix is
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constructed as follows:

Q(t) =

























04×4 04×3

03×4

W 0 0

0 W 0

0 0 W

























= W









04×4 04×3

03×4 I3×3









where W signifies the spectral density of white noise entering the system. Further,

following eq. (3.5), Qk is derived as follows:

Qk =

∫ ∆t

0

Φ(τ)Q(t)ΦT (τ)dτ

As a result of this integration, Qk takes shape of the following 7x7 matrix:

Qk =
∆t2

4
· (4.10)

·

















































∆t
3

(q2
x + q2

y + q2
z)

−∆t
3

qwqx
∆t
3

(q2
w + q2

y + q2
z)

−∆t
3

qwqy −∆t
3

qyqx
∆t
3

(q2
w + q2

x + q2
z)

−∆t
3

qwqz −∆t
3

qzqx −∆t
3

qzqy
∆t
3

(q2
w + q2

x + q2
y)

−qx qw qz −qy
4

∆t

−qy −qz qw qx 0 4
∆t

−qz qy −qx qw 0 0 4
∆t

















































Variance-covariance matrix must be symmetric by definition, hence only the lower

triangle part is presented here. To the best of our knowledge, a closed form
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expression for the OV model process noise covariance matrix has never appeared

in the literature. This contribution concludes the derivation and description of

all the necessary construction blocks for the EKF recursive step algorithm.

4.4 Prediction

As developed in the previous section, the EKF provides a means to estimate

orientation through a recursive predictor-corrector cycle working with the OV

model and a sequence of measurements made available to it at discrete, relatively

evenly spaced points in time. The result is the estimator’s best guess of the cur-

rent quaternion attitude. The two-layer predictor-estimator framework proposed,

however, necessitates predicting the user pose a variable time into the future. For

linear models, such as the positional constant velocity model, this prediction step

is carried out identically to the projection of the state during the time update,

namely xp = Φpredx̂k, where Φpred is set in accordance with the prediction interval

Tpred (see section 3.4).

For orientation prediction, Azuma offers an elegant closed form solution to

eq. (4.2) (e.g. [Azu95], [AB94]):

Qp =

[

I cos d +
M(tk)

d
sin d

]

Qtk
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where d is a substitution variable calculated as a second norm of the vector

1
2

∫ Tpred

0
wdt. For the orientation-velocity model,

w = const⇒ 1

2

∫ Tpred

0

wdt =
1

2
Tpred · w =

1

2
Tpred ·

















w0

w1

w2

















Then d becomes 1
2
Tpred

√

w2
0 + w2

1 + w2
2 = 1

2
Tpred · norm(w, 2).

M(tk) is constructed according to equation (4.2) with w0, w1, w2 taken from

the current state estimate X̂k. The predicted quaternion is then explicitly nor-

malized. With only a few lines of Matlab code to implement it, Azuma’s solution

comes across as an attractive option. The results obtained using this approach in

terms of the RMS error were rather disappointing, however. I hypothesize that

one of the reasons could be the division by d, which takes upon values very close

to zero. For motion datasets I worked with, angular velocity components happen

to oscillate about zero, in some cases not exceeding the range of ±0.6. The norm

of such a near-zero vector is then further multiplied by Tpred ≪ 1.

Therefore, RK4 was favoured over Azuma’s closed-form solution in the com-

putation of the state’s predictive estimate. In doing so, I maintained consistency

with positional KF algorithm in a sense of using state propagation step for pre-

diction as well. Naturally, while employing (4.7) to generate a future pose, Tpred
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was used in lieu of ∆t.

4.5 EKF algorithm summary

EKF based head orientation predictor algorithm can now be summarized as fol-

lows:

I. Initialization

1) set state X̂0 = [qw qx qy qz w0 w1 w2]
T =

























first measured orientation

0

0

0

























2) set covariance matrix P0 =









I4×4 04×3

03×4 100 · I3×3









1

3) compute measurement noise covariance matrix R based on available

offline data

II. EKF Procedure

For each received kth measurement do:

1) Time Update

1Similarly to the positional KF algorithm in section 3.4, large numbers are used to trust the
first few tracker measurements over the model.
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a. advance the state using RK4 (see (4.7)):

X̂−

k =































Numeric solution to

IVP (4.3) at t = tk subject

to X = X̂k−1 at t = tk−1































b. compute fundamental matrix Φk according to (4.9)

c. compute process noise covariance matrix Qk according to (4.10)

d. obtain a priori estimate of the EKF convariance matrix

P−

k = ΦkPk−1Φ
T
k + Qk

2) Measurement Update

a. compute H according to (4.5)

b. compute Kalman Gain

Kk = P−

k HT (HP−

k HT + R)−1

c. form a Z4×1 measurement vector

d. update the state

X̂k = X̂−

k + Kk(Zk − h(X̂−

k ))

e. update covariance P : Pk = (I −KkH)P−

k
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3) Normalize the quaternion part of the state explicitly

III. Prediction

1) form qk = [qw qx qy qz]
T and wk = [0 w0 w1 w2]

T from X̂k

2) set ∆t = Tpred

3) obtain qp using RK4

4) explicitly normalize qp
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5 Network Delay Estimation

5.1 Introduction

Network delay estimation is the lower of the two layers of our latency ameliora-

tion framework (see figure 5.1). Its primary purpose is to maintain an estimate

Figure 5.1: Two-layer latency amelioration framework

of network propagation delay between communicating entities sharing a virtual

environment. As user poses change, the difference in pose, user commands bring-

ing them about, or the current pose itself are encapsulated into datagrams and

shared over the network with other participants. Such information exchange

makes network propagation delay an inevitable part of DVE applications.
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Distribution of a VE state over a packet switched network suffers from a host

of inherent problems, such as apparent lag, variability in that lag, packet loss,

out-of-order packet arrival at the receiving end, and variability in the packet

interarrival time. Depending on the nature of an over-the-net application and

its quality of service (QoS) requirements, the relative influence and detrimental

effects of the above mentioned factors vary. Network latency and its variability

have been shown to rank among the most influential network aspects for the

realm of distributed interactive virtual environments (e.g. see [PK99], [PW02a]).

Figure 5.2 illustrates these concepts, highlighting the subtle difference between

latency and jitter.

Figure 5.2: Message passing under a)no latency b)constant latency c)latency with

jitter
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The first of the three timelines illustrates a physically impossible scenario,

where a network system exhibits no latency. The time delay between a dispatched

event and its effect in such case is essentially zero. A real system may, however,

be classified as zero-latency if the time-delay happens to be under the threshold of

the perceptible. The second subfigure demonstrates a system with a fixed delay

(∆td = const), while in the third one, the time it takes for an event to take effect

varies. Networked systems are the most vivid examples of variable time-delay due

to the variability in propagation time, queuing delays, and end-point processing

typically incurred by transmitted packets. As previously mentioned in the moti-

vation section, latency and jitter, characteristic of the last two types of systems,

are detrimental to CVE operator performance. Additionally, they negatively in-

fluence the enjoyment and tolerance of shared VEs, forming the foundation for

our quest toward a variability-aware latency compensation technique.

5.2 Motivation

Three radically different approaches to incorporating the knowledge of network

delay into a distributed simulation naturally yield themselves:

1. obtain a priori network delay information and use it for subsequent simu-

lation runs
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2. measure network delay upon each packet’s arrival at the receiving end

3. estimate network delay before each packet’s departure from the sender

5.2.1 Predetermined Network Delay

The advantages of the first approach are apparent from its simplicity. Indeed,

network delay data can be collected over the course of a representative period of

time and further processed to calculate mean network delays for different times

of day, for instance. It would yield an a priori estimate of delay to use with

subsequent runs of a distributed simulation — an estimate typically held constant

for the entire duration of the application run. Such approach would provide the

pose predictor with a required prediction interval to use, avoiding the necessity

for online network delay estimation. Furthermore, given an analytically derived

expression for pose prediction as a function of a prediction interval, it would be

possible to precompute it, substituting in the value of the latter, which saves

valuable processing time at runtime.

It must be noted, however, that prior computation of network delay may work

well only for systems with constant or near-constant network latency, as illus-

trated by figure 5.2b). Stable network delay on publicly accessible non-dedicated

networks is highly unlikely, where the traffic is expected to ”vary widely and dy-
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namically over the course of a [single] connection” [WS95]. Therefore, even more

sophisticated examples of the first approach, such as precomputation of the entire

sequence of round-trip time (RTT) delays based on past network performance,

are not expected to succeed. Yet, the assumption of constant network delay is

prevalent in DIVE implementations today and, therefore, was included in our

comparison study.

5.2.2 Client-Side Measurement Approach

If network latencies cannot be determined a priori or in light of the disadvan-

tages of this approach, they must be dealt with at run-time. Measuring network

propagation time is a distinct possibility, since it can be done after the packet

has already traversed the network. The measurement could then be used as Tpred

in the estimation of the current sender’s pose (see sections 3.4 and 4.5) based on

the belated pose measurement most recently received. Although not identical,

this approach closely resembles the ubiquitous dead reckoning technique that too

performs prediction on the client side, taking the last known or computed pose as

an initial value in its predictive estimate of remotely controlled entity’s current

pose.

Among the forefront disadvantages of client-side delay measurement approach
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is its apparent need for tight clock synchronization among participating worksta-

tions, limiting the range of applications that can benefit from compensation tech-

niques based on this approach. The accuracy of network delay measurement is,

naturally, conditioned on the accuracy of the clock synchronization mechanism.

For geographically distributed DIVEs, synchronization would require periodic

exchange of information over the network (as is the case with the well-known

Network Time Protocol), which itself suffers from network propagation latency.

Not the least of the concerns about receiver-side latency measurement ap-

proach arise from the fact that it requires a smart client, having access to the

model and capacity to use it in order to obtain an estimate of the current pose.

The implications of a smart client are twofold. First, it has to be informed, i.e.

knowledge of the model for a trajectory of motion or a dynamic behavior of a

remote entity is a necessary condition for the client to perform its pose estimation

and prediction. Second, the client must be powerful, i.e. adequate computational

resources are expected to be present to handle pose estimation and prediction for

all simulated entities sharing a Virtual Environment at any given time. The

former implication, raises intellectual property and privacy concerns, while the

latter translates into a financial burden for simulation participants, which can be

avoided.
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5.2.3 Sender-side Delay Estimation

Network delay estimation at the sending end satisfactorily addresses all of the

above disadvantages, providing additional benefits beyond that. Security and

privacy concerns are eliminated for distributed applications where the knowledge

of tracked object is considered valuable intellectual property, and/or certain priv-

ileges (such as security clearance) are required to have access to it. This approach

also does not require clock synchronization, as the round-trip time is measured

when the packet acknowledgments are received. Using RTT measurements does

assume either a symmetry of the connection or a certain known relationship be-

tween one-way transit times (OTT) incurred on a forward and reverse paths,

which is usually a reasonable assumption.

Furthermore, in this approach, a sender presents clients with a ready to use

pose estimate, eliminating the need for smart receivers and adequate computa-

tional resources at their disposal. Finally, sender-side latency estimation offers

an added bonus of reduced sensitivity to packet loss. In contrast, pose prediction

at the receiving end will suffer from lack of continuous and prompt pose mea-

surements from remote workstations, whereas senders can rely on access to the

complete data record for pose estimation and prediction regardless of network

reliability.
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5.3 Methods of Estimation

Its advantages notwithstanding, sender-side network delay estimation does, how-

ever, entail meeting several technical challenges. First, there appear to be no

good models for network delay useful for its short-term prediction. Numerous

studies attempted to model and predict network traffic characteristics, such as

network latency, packet interarrival time, and bandwidth consumption. In his

seminal paper on TCP extensions, Jacobson [JBB92] referred to network delay

estimation as a signal processing problem, and a large variety of signal process-

ing approaches have been proposed. A sample of the literature surveyed on this

subject suggested algorithms as diverse as the following:

• economic forecasting theory [MCML05], [WO94]

• machine learning and neural nets [Cro05]

• autoregressive filters

• network weather service

• multimedia playout delay prediction

with many possible variations thereof. Autoregressive filtering approach was

found particularly attractive for the reasons we hope to unveil through a brief
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discussion of other candidate techniques.

Network Weather Service (NWS) focuses on network performance forecasting

specifically in the context of predictive methodologies [Wol98], [WSH99], which

places it among the most relevant network delay estimation approaches. Further-

more, NWS adaptively selects the best network forecaster from an expandable

pool of predictors, running them all in parallel. It relies on a set of servers taking

turns to obtain a distributed sequence of network measurements, and, therefore,

a tight clock synchronization mechanism must be in place. This constitutes the

first undesirable feature of NWS, as previously discussed in section 5.2.2.

Secondly, both NWS and other techniques, such as ARIMA (see [BMK96],

[GP94]), that have been shown to work well for aggregate internet traffic, exhibit

apparent unsuitability for applications that demand short-term network latency

estimates. The results for NWS performance analysis were presented on the time

scale of 24 hours, and ARIMA explicitly targeted long-term network prediction

[GP94].

Estimation of network characteristics other than latency may be of interest

because they provide indirect knowledge of the end-to-end delay itself. For the

example of packet interarrival time (IAT) prediction, while it is uninformative

of the overall delay, it can be used to estimate its variation if the frequency of
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packet generation by the sender is known at the receiving end. The intuition is

that IAT should be precisely equal to the inverse of packet sending frequency in

the absence of delay jitter, as illustrated by figure 5.2b). Such network systems

are rare, and variability in delay is significantly more common and troublesome.

As illustrated by fig. 5.3, the presence of jitter can be symbolically written as:

Figure 5.3: Relationship between IAT and RTT delay

ottfi 6= ottfi+1
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where ott stands for one-way transit time, with f and r superscripts representing

the forward and reverse paths. ∆tia denotes a measurement of packet inter-arrival

time(IAT) at the receiving end and is, therefore, non-constant in this case.

A quantitative relationship can be derived that ties together packet IAT,

OTT, and the frequency of its generation:

∆latency = ottfi+1 − ottfi = ∆tiai −
1

f
(5.1)

In this model, changes in ∆tiai must be due to latency variation. In fact, the right

hand side can be used as a gauge of whether the last packet arrived sooner than

expected (∆tiai − 1
f

< 0), later than expected (∆tiai − 1
f

> 0), or there was no

delay jitter whatsoever (∆tiai − 1
f

= 0).

Eq. (5.1) hints at the possibility of a powerful recurrence relation that allows

calculation of most recent one-way transit time based on packet’s previous OTT

and IAT measurements. Indeed, introducing the assumption that ottfi = ottri =

rttdeli
2

, we can rewrite the above as follows:

rttdeli+1

2
=

rttdeli
2

+ (∆tiai −
1

f
)

Ergo, it has been shown that existing work on modeling interarrival packet

time distribution can be used for RTT delay estimation. Furthermore, given the

recursive nature of the above discrete-time relationship, we even have a poten-
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tial for an EKF implementation of the network delay estimator as well. How-

ever, despite the apparent promise this approach holds, the research literature

surveyed appears to be of highly empirical nature ([Bor00], [F0̈2], [ZA05]) and

rather focuses on fitting various distributions to the data collected offline than

on formulating the models for prediction/estimation at runtime.

Finally, multimedia playout delay prediction (e.g. [YLLG03], [DS99]) ad-

dresses the problem of network delay impairment for a different class of applica-

tions. Suitability of compensation techniques borrowed from real-time domains,

such as video and voice over IP streaming, for network delay amelioration in

DIVEs is questionable for a variety of reasons.

First of all, the focus in the former is shifted more towards reliability (lack

of packet loss) and playback smoothness (lack of jitter) than latency reduction

or amelioration. Indeed, when using Skype, for instance, lost syllables or choppy

playback is significantly more detrimental to usability and quality of experience

than a mere lag, which primarily impacts turn-taking. In case of DIVEs we can

afford to lose and even deliberately drop pose datagrams, especially in situations

where more than two of them are received within a single frame.

Secondly, in case of DIVEs, we don’t have to worry as much about out-of-

order packets. Whenever outdated information is received - it simply bears no
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effect on the simulation, since it’s already been updated with a more recently

generated pose.

It has brought us to the conclusion that most of the existing approaches

to network delay estimation are not suitable for reasons ranging from mismatch

between application domains, to the emphasis on offline model fitting to aggregate

network traffic, to a clear focus on network delay prediction on a much coarser

time scale than required.

5.4 The Chosen Method

The lack of adequate network delay models ultimately brings us to a time-tested

auto-regressive (AR) filtering approach introduced by Jacobson as a means to

calculate retransmission timeout (RTO) for TCP fragments. TCP RTO was

designed for network delay estimation of immediate utility during a single end-to-

end connection — an attractive feature for applications with short-term network

delay prediction requirements.
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The retransmission timeout algorithm can be summarized as follows [SFR04]:

delta = measuredRTT − srtt

srtt ← srtt + g × delta

rttvar ← rttvar + h(|delta| − rttvar)

RTO = srtt + 4× rttvar

(5.2)

with weight factors g & h ranging between 0 and 1. Jacobson suggests keeping

track of a smoothed round-trip time estimate (srtt) by weighting the estimation

error delta with gain g. rttvar is a similarly smoothed estimator of mean devia-

tion calculated as the weighed average of previous estimate and RTT estimation

error delta. Indeed, eq. (5.2) can be rewritten as an AR filter:

srtti+1 = (1− g)× srtti + g × rttdeli

rttvari+1 = (1− h)× rttvari + h× |rttdeli − srtti|

providing smoothed estimates of round-trip time delay and its deviation from the

mean.

The SRTT network delay estimator, as we’ve denoted it, compares rather

well with approaches of similar complexity, such as running average and moving

window average. Running average requires infinite memory and assigns ever-

decreasing weight to subsequent RTT delay measurements. Using running av-

erage for network delay estimation is also undesirable in cases where there are
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noticeable steps in measured network delay, or an application runs for an ex-

tended period of time. In case of noticeable steps in the network delay, SRTT is

expected to converge to a new mean significantly faster.

Moving window average, in its turn, compares rather closely to the autoregres-

sive filter due to a similar dynamics. In contrast to SRTT, however, it requires

additional storage and translates into more computational resources in terms of

both memory and CPU time consumed by network delay estimation algorithm.

Finally, it is acknowledged that the improvements to SRTT in particular and

our approach to network delay estimation in general are possible. One of the

most obvious ones would be to tune its weight factors during run-time according

to the increase or decrease in rttvar. However, experimental results presented

in chapter 7 dissuaded the author from doing so due to the fact that possible

improvements do not necessarily translate to improved overall network delay

amelioration framework performance.
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6 The Simulator

For the purposes of evaluating our approach to network delay amelioration, a

unidirectional type client-server DIVE illustrated in figure 6.1 was simulated.

Our virtual testbed consists of a tracking and rendering workstation, separated

track render

IS900

display

cloud
Internet

Figure 6.1: Simulated experimental setup

by a network. The tracking workstation provides sampled head position and

orientation, while the renderer must properly adjust its display as the user pose
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changes over time. The Internet cloud introduces propagation delay we attempt

to ameliorate. Figure 6.2 gives a very high-level overview of the simulator’s basic

functionality. The software system is composed of three principal components:

the network, pose, and statistical performance blocks.

Figure 6.2: Simulation functionality overview

The network delay estimator (chapter 5) is the lower of the two layers of our

latency amelioration framework. It performs estimation of network propagation

delay (t̂dk)
1 based on real timestamped roundtrip time measurements of network

data. This estimate is used as prediction interval Tpred by the pose estimation

1
k is the discrete-time independent variable and superscript d stands for delay

74



and prediction block, which maintains an estimate of delay-corrected head pose

xp
k, where superscript p identifies prediction. Based on ground truth data for

both head motion and network RTT delay tdk, statistical analysis is finally carried

out for the overall performance of the dual-estimator system.

6.1 Network Delay Estimator

The network delay estimator introduced in chapter 5 was implemented in C and

extended to provide ground truth RTT data to the analysis module in addition

to the estimate of network delay.

As part of RTT data collection by this module, the generation of packets at

the sending end was driven by interrupts received from a real-time clock (RTC)

chip to ensure consistency in the frequency, selected to reflect that of a single-

station IS900 head tracker. To minimize the possibility of a local queuing delay,

I/O multiplexing was performed on the sending and listening sockets through the

use of select() system call.

In addition to the SRTT estimate (see section 5.4), a running average was

also computed at each packet interval. Thus, for each session a combined table of

ground truth data and two separate estimates: SRTT and runavg were obtained.
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6.2 Pose Estimation and Prediction

Details of the functionality of the pose estimation and prediction block is shown

in figure 6.3. For scalability and experimental flexibility, there is a clear logical

Figure 6.3: Detailed simulation functionality

and implementational separation between positional and orientation modules in

addition to the separation of their functional components of estimation (KF proc,

EKF proc) and prediction (KF pred, EKF pred). The third functional compo-

nent of the pose block is initialization.
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6.2.1 Positional KF Initialization

The implementation of the pose block and subsequent evaluation was based upon

real head pose data obtained from a motion repository initiated by Azuma &

Bishop and later augmented and postprocessed by LaViola [LaV03b]. This repos-

itory provided ground truth position and quaternion orientation data collected

for different head movement profiles.

Given the specifications of an in-house IS900 tracker, a simulated measure-

ment data sequence was derived from the ground truth dataset by downsampling

it to the frequency of single-station IS900 (180Hz) and subsequently perturbing

the result with white noise. For positional Kalman Filter, the white noise se-

quence is simply obtained by generating a vector of normally distributed values

with the mean of zero and standard deviation equaling the specified positional

RMS error for the simulated IS900 sensor.

6.2.2 Orientation EKF Initialization

Similarly to the positional case, the measurement sequence for orientation was

derived from the quaternion ground truth. A naive approach to doing so would

be to treat quaternions as a sequence of 4D vectors and generate white noise for

each of the vector components, similarly to positional data perturbation. Such
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approach is considered by the author inadequate for a variety of reasons:

• It is unclear what standard deviation must be taken for the generation of

normally distributed noise sequences.

• It is preferable to leverage the elegant geometrical interpretation of these

hyper-complex numbers, offering a meaningful explanation for quaternion

sequence perturbation.

• For the simulated IS900 sensor, orientation and precision is specified in

terms of angular RMS error, and its relation to all of the components of a

quaternion, treated as a 4D vector, is not readily apparent.

Orientation measurement derivation, therefore, was based on quaternion se-

quence perturbation, for which no known widely accepted methods were found at

the time of writing. The method used can most easily be understood in terms of

the geometric interpretation of quaternions (see Kuiper’s [Kui99] for more detail).

A unit quaternion can be written in the following form:

q = q0 + ~q = cos
α

2
+ ~u sin

α

2

where ~u and α signify the axis and angle of rotation, respectively, represented by

q. By applying a quaternion rotation operator Lq(v) = q∗vq to any 3D vector
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~v, written as a pure quaternion v = [0 ~v], we rotate ~v about ~u by α. Therefore,

through the introduction of operator Lq, quaternion q has taken on a geometric

meaning of carrying the axis and angle information.

Furthermore, subsequent application of operator Lp to the result of Lq (see

figure 6.4) yields the following:

Figure 6.4: Quaternion rotation operator combination

Lp(v
′) = p∗v′p = p∗q∗vqp = (qp)∗v(qp) = Lqp(v) (6.1)

Ergo, the product of two unit quaternions signifies the combined effect of

consecutively carrying out the respective rotations. Clearly from eq. (6.1), the

effect of Lr(v), where r = q ⊗ p, is identical to a sequence of rotations Lq(v) fol-

lowed by Lp(v
′). This geometrical insight arms us with necessary understanding

to proceed with quaternion perturbation in a more principled manner. Indeed,

performing quaternion multiplication of the ground truth sequence with noise

quaternions generated, has the desirable effect of perturbing the true rotation
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by a subsequent noise rotation, carried out about a random axis with the angle

normally distributed about zero. Appendix B will help the reader visualize the

result of the above operation.

We implement this approach with the following algorithm:

I. Preparation

1) Set angular and positional standard deviations σα & σpos

2) Set σu = σpos

√
0.1

where σ2
u is the variance for the distribution of the remaining (axial)

noise quaternion components. LaViola found that the variance for

noise quaternion components is smaller than positional noise variance

(σ2
pos) by a factor of 10 for the dataset we are using.

II. Generate the q0 (angular) component of the noise quaternion sequence

1) Generate normally distributed sequence nth of n values, such that

nth(i) ∼ N(0, σ2
α)

2) Cap nth at some reasonable value, say ±10 · σα

3) Perform trigonometric conversion to obtain the q0 component sequence

nq0 = cos

(

nth ∗ π

2 ∗ 180

)
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note that the resulting nq0 is equivalent in dimension to nth and is an

n× 1 vector in our case.

III. Generate the ~q (axial) components of the noise quaternion sequence

1) Construct matrix nq of 3 column vectors, say u1, u2, & u3, such that

uk(i) ∼ N(0, σ2
u), k = 1..3 ∧ i = 1..n:

nq =

















| | |

u1 u2 u3

| | |

















2) Perform row-wise normalization to obtain a sequence of 3D unit vec-

tors u(i):

nq =

















− u(1) −

− u(2) −

− u(3) −

















3) Scale u1, u2, & u3 by n× 1 vector sin nth∗π
2∗180

element-wise to obtain ~nq:

for j=1..3

nq(:,j) = u_j .* sin(nth*pi/360)

end

where a(:, j) represents the jth column vector and .* denotes element-

wise multiplication (following Matlab convention).
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IV. Combine nq0 and ~nq to construct nq = [nq0 ~nq]

V. Perturb ground truth

1) Perform perturbation by element-wise multiplication of ground truth

sequence with nq:

measdata = QuatSeqMult(truedata, nq);

Quaternion measurement sequence measdata is thus derived from the down-

sampled ground truth data. The attentive reader will note, however, that the

EKF measurement update (see section 4.5) is completely oblivious to the spe-

cial algebraic properties of quaternions. In fact, a 4 × 1 vector is formed from

quaternion components and all subsequent algebraic operations are carried out

as if dealing with typical real numbers. Furthermore, the underlying assumption

is that the measurement noise in each component of the measurement vector is

white. Therefore, we must ascertain that the result of quaternion sequence per-

turbation algorithm does not violate that assumption. A simple check is thus

performed by taking a difference (qdiff) between obtained noisy quaternion se-

quence measdata, now treated merely as an n×4 matrix, and the true data matrix,

and ensuring that qdiff consists of column vectors of normally distributed about

zero noise values. Bar plots were constructed to allow for visual inspection of
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qw, qx, qy, and qz distributions and the results - convincingly supportive of the

author’s hypothesis that the assumption would be upheld (see figures 6.5 and

6.6).
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Figure 6.5: Distribution of qdiff components

As a reminder, notations q = q0 + q1i + q2j + q3k and q = qw + qxi + qyj + qzk

have been used interchangeably throughout the research project.
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Figure 6.6: Distribution of qdiff components
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6.3 Statistical Analysis

The purpose of the Analysis block is twofold:

a) match each received pose with a data point in the ground truth sequence

according to their respective timestamps

b) perform statistical analysis of overall framework performance

This allows us to make both visual and quantitative judgements of how well

the dual-estimator compensation framework was able to match the ground truth,

since, ideally, we’d like the rendering workstation to have exactly the same pose

information as available locally at the sender at exactly the same time. Graphical

visualization of our comparison is rather easy to perform using plotting capabil-

ities of Matlab. To arrive at the quantitative comparison, we have to find the

corresponding data points in the ground truth set for each record in the received

sequence. It might seem sufficient at first to simply choose the closest matching

data point in the denser (by a factor of 6 in our case) ground truth sequence.

Keeping in mind the sampling frequency f of the latter, we incur a mismatch

error of up to 1
2f

in doing so. To obtain higher effective precision, interpolation

was used.

For position it suffices to employ linear interpolation:
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intpose = (1-factor).*apose + factor.*bpose

where all of the above are column vectors of time sequences, and the multiplica-

tion is element-wise.

For orientational component interpolation we used the spherical linear quater-

nion interpolation algorithm, perhaps better known as the Slerp operator ([Sho85],

[Wik06]):

Slerp(p0, p1, t) =
sin(1− t)Ω

sin Ω
p0 +

sin tΩ

sin Ω
p1 (6.2)

where Ω is the angle between unit vectors p0 & p1, found by taking their dot

product:

cos Ω = p0 · p1

and t is the interpolation factor that grows linearly from 0 to 1 as we go from p0

to p1 along the arc.

The above is actually completely detached from a quaternion interpretation

of end points p0 and p1 as well as from the dimension of the Eucledian space in

which the sphere is embedded. In the context of quaternions, we have to deal

with the duality of orientation representation – a matter of ensuring that p0 &

p1 are in the same hyper-hemisphere. Hence the prior check of the dot product

sign and corresponding manipulation of one of the quaternions in the vectorized

algorithm presented in appendix C. Finally, obtaining the interpolated sequence
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of ground truth poses puts us in a position to perform statistical comparison of

the result with the received sequence, as our timestamps now have been aligned.

Global pose and component-wise root-mean-square (RMS) error metrics were

chosen, as is typical of head movement prediction performance analysis in the VR

community ([AB94], [Azu95], [LaV03b], [KEP97], [WO95]). For component-wise

RMS, the difference between the interpolated pose and the received sequences is

calculated first:

diffpose = intpose − recvseq(:, pose)

followed by column-wise computation of

pose rmse(i) =

√

√

√

√

n
∑

j=1

diffpose2(j, i)

n

Global position RMSE is calculated as follows:

pos rmse =

√

√

√

√

1

n

n
∑

j=1

3
∑

i=1

diffpose2(j, i)

where i ∈ {1, 2, 3} represents x, y, and z components respectively.

Global orientation RMSE was computed based on the angular error, which

provides an intuitive measure of the discrepancy between the ground truth and

received orientation in terms of the angular separation between them. Based on

the geometrical properties of quaternions briefly discussed in the previous section,
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angular error Eα is extracted from the q0 component of the difference quaternion

qdiff = qreal ⊗ q−1
pred = qreal ⊗ q∗pred

denoted as qdiff[0] as follows:

Eα =
2 · 180

π
cos−1(qdiff[0])

Angular RMSE for the entire motion sequence can then be computed as

ang rmse =

√

√

√

√

n
∑

j=1

E2
α(j)

n
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7 Results and Discussion

7.1 Experimental Setup

7.1.1 Head Motion

Six head motion datasets were chosen from the repository partially collected

and preprocessed by LaViola (see [LaV04],[LaV03b],[LaV03a], and [LaV03d]).

Each dataset features approximately 20 seconds of positional and orientation

data initially captured by an IS900 tracking system. The head motion datasets

fall into three major categories and reflect specific motion profiles summarized as

follows:

Two datasets were selected for each head motion profile and will be referred

to for the rest of the chapter by the corresponding name from the table above,

augmented with an id ∈ {1, 2} for unique identification. The simulation was

carried out using Linux Matlab version 7.1.0.183 (R14) Service Pack 3 on a time-
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name motion profile

HEAD1 simple head movement where the user is roughly stationary

and rotates to view the display screens

HEAD2 more complex head movement where the user is allowed to

both walk and look around the CAVE

HEAD3 more complex head movement where the user is examining a

fixed virtual object to gain perspective about its structure

shared quad Xeon 3.2GHz server with a total of 4GB of RAM.

7.1.2 Network Setup

Network delay datasets (also referred to here as traces) were collected in-house.

Due to a relatively low-latency network infrastructure at York University, four

separate geographically distributed sites were used to collect each single RTT

trace. They basically consisted of an initiator at York (CS), responder at the

University of Waterloo, and two relay workstations in between — at NRC Canada

location in Ottawa and the York University residential complex (YR). Figure 7.1

illustrates the flow of information from the initiator to responder. To accomplish

this, I implemented bidirectional network address translation (NAT) using ipta-
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Figure 7.1: Network RTT delay data collection setup

bles [IPt] on the relay workstations. This requires root priviledges significantly

limiting my configuration options.

As already mentioned in the Simulation chapter, the client-server network

trace collection application was written in C and utilized real-time clock chip

interrupts to trigger packet generation by the initiator at the time intervals less

than the Linux default time resolution of 10 ms. Without RTC, the frequency

of packet generation would be at most 100 Hz (less in practice) - significantly

less than the desired 180 Hz sampling frequency of a single-station IS900 tracker

([IS900]).

Nine network delay traces were collected with their basic statistical character-

istics summarized in table 7.1 in us units. Typical packets traversed 32 hops in

one direction or 64 hops for RTT data used for the simulation. The significance

of the large number of hops is in added overall delay jitter due to the variability
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trace min avg max sdev

1 17369 17882.704 32183 543.435

2 17427 17986.952 54363 1256.779

3 17409 17880.449 29508 495.901

4 17392 17937.744 30851 824.272

5 17388 17922.094 41664 946.994

6 17379 17912.935 30595 635.553

7 17450 17955.423 34664 616.575

8 17413 17939.845 30093 570.636

9 17491 17906.292 35111 653.548

Table 7.1: Network RTT trace statistics
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in queuing delay at each.

7.1.3 Predictor Conditions

To recapitulate, head motion data is used in concert with estimates of network

delay to predict the user pose a certain time into the future. Four different

conditions were explored for the pose predictor:

a) Const – network delay estimate was set to a constant value

b) Runavg – a running average of network RTT was used as an estimate of

current round trip latency

c) SRTT – smoothed RTT estimator described in section 5.4

d) Opti – an omnipotent network delay estimator given the perfect knowledge

of the latency for each packet

Runavg and SRTT were introduced and discussed as viable candidates in

chapter 5. Opti was included to compare the overall performance of the realistic

framework based on SRTT with that based on the ideal network delay estimator,

providing the pose predictor with a correct prediction interval every time. There-

fore, Opti effectively serves as a benchmark we strive to reach through potential

improvements to network delay estimation.
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Finally, constant delay prediction is the most widespread approach to delay

compensation at the time of writing. The value for the constant RTT delay was

chosen to equal to the mean RTT delay for a given network trace — the best

possible constant estimate of network delay the framework can have.

7.2 Results and Discussion

Three metrics will be used for performance evaluation: root mean square error

(RMSE) – providing the estimate of average performance, absolute maximum

error (MAXE) – descriptive of the performance in the worst case, and what I

call TIBET. TIBET is an acronym for TImes BETter statistic, where the ratio

of RMSE for the specific condition to RMSE of the chosen base is computed as

an index of relative performance.

7.2.1 Position

7.2.1.1 Smoothing Performance

The performance of the positional Kalman Filter is fairly consistent across all

six head motion datasets and is nearly identical for all three components. Fig-

ure 7.2 presents an overlaid plot of KF estimator RMS error versus using the
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Figure 7.2: KF Estimate vs Measurement Data RMSE
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Figure 7.3: KF Estimate vs Measurement Data Maximum Error
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measurement data directly. Bars of the same color but varying height represent

RMSE information for each of the six motion datasets on a per-component ba-

sis. It can be seen that KF smoothing improves the estimate of the state in all

cases. Table 7.2 illustrates the relative performance improvement resulting from

pcmp head11 head12 head21 head22 head31 head32

x 1.4775 1.4721 1.4506 1.4309 1.4443 1.3662

y 1.4840 1.4884 1.4694 1.4597 1.4697 1.4141

z 1.4821 1.4655 1.4682 1.3350 1.4414 1.3546

Table 7.2: TIBET for KF estimator performance

Kalman Filter smoothing. A consistent improvement in the neighborhood of 45%

is observed. TIBET ratios are slightly higher for HEAD1 than for motion profiles

2 & 3 though — a fact we attribute to small range of translational head motion

characteristic of the first motion profile.

The KF smoothing also significantly reduces the worst case error as can be

seen in figure 7.3.

7.2.1.2 Predictor Performance

Our principal goal is to minimize the gap between the output of the predictor and

the ground truth. What follows is, therefore, a look at the aggregate performance
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of the entire compensation framework. Figure 7.4 shows the average framework
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Figure 7.4: Global Position RMSE across all data

performance for the four prediction approaches in terms of global head position

RMS error across all motion datasets and network traces. The results reveal that

both Runavg and SRTT based predictors visibly outperform constant delay pre-

diction. Furthermore, the improvement gained from the perfect knowledge of the

network delay in the case of Opti does not translate into a noticeable performance

increase. The apparent consistency of RMSE information across all the network

traces, signified here by individual bars of the same color, is noteworthy as well.

It motivated us to present the TIBET statistic for a randomly chosen network
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RTT dataset to allow for a 2D table representation (Table 7.3). Performance of

dataset Const Runavg SRTT Opti

head11 1.0000 2.3421 2.3479 2.3527

head12 1.0000 2.6451 2.6553 2.6666

head21 1.0000 3.8868 3.9055 3.9377

head22 1.0000 3.5576 3.6015 3.6441

head31 1.0000 4.2791 4.3098 4.3495

head32 1.0000 4.6968 4.7196 4.7526

Table 7.3: TIBET for overall framework performance for all head motion datasets

the predictors relative to a constant delay prediction increases from the first mo-

tion profile to the third. A clear correlation is observed from fig. 7.5 between the

extent of variability in the global position and the increase in the framework per-

formance relative to constant delay prediction. The figure illustrates the spread

of the distance from a global position mean for each head motion dataset. The

arithmetic means were also included to emphasize the increase in variability from

motion profile 1 to 2 & 3.

Finally, a maximum error bar plot is presented in figure 7.6 for the same net-

work trace. Consistent with the RMSE data, runavg and SRTT based predictors
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Figure 7.5: global position variability

still provide better performance than constant delay prediction, and the overall

trend of a steady increase in TIBET from left to right is clear from mere visual

inspection.

7.2.2 Orientation

7.2.2.1 Smoothing Performance

Similarly to the positional KF case above, the Extended Kalman Filter based

smoother reduces the RMS error w.r.t. raw measurements for each of the quater-
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Figure 7.6: Global Position Maximum Error

nion components across all of the head motion datasets (Fig. 7.7). For a

given component, bars of the same color signify RMSE readings for individual

motion sequences. According to table 7.4, the EKF estimator manages to fol-

low the ground truth with approximately 90% less error than the measurement

data on its own with no apparent trends in the variation of relative smoothing

performance across the motion profiles. Figure 7.7 however does show a subtle

difference in consistency with which qx & qz components are estimated compared

to qw & qy. As in the positional KF case it appears that the lack of variability

in the ground truth data directly translates into the quality of its estimation.
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Figure 7.7: EKF Estimate vs Measurement Data RMSE
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Figure 7.8: EKF Estimate vs Measurement Data Maximum Error
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qcmp head11 head12 head21 head22 head31 head32

qw 1.7969 1.7204 1.7341 1.6413 1.7649 1.7207

qx 1.9100 1.9507 1.8175 1.9156 1.9095 1.8715

qy 1.8248 1.8055 1.7656 1.7113 1.7931 1.7759

qz 1.8795 1.9260 1.8919 1.9389 1.9153 1.8894

Table 7.4: TIBET for EKF estimator performance

Indeed, with the exception of the last motion dataset, all others exhibit greater

standard deviation in qw & qy than qx & qz as can be seen from table 7.5.

dataset qw qx qy qz

head11 0.0998 0.0542 0.4063 0.0367

head12 0.0903 0.0654 0.4191 0.0570

head21 0.1859 0.1662 0.5037 0.0955

head22 0.1528 0.0842 0.4689 0.0535

head31 0.0804 0.0823 0.1627 0.0717

head32 0.0446 0.1059 0.1344 0.1194

Table 7.5: Standard Deviation for orientation

Finally, the EKF estimator does surprisingly well in the worst case as well

(Fig. 7.8). The variability in the maximum error is much greater, as expected,
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but the overall performance improvement relative to the measurement error is

reminiscent of that for estimator performance on average.

7.2.2.2 Predictor Performance

A measure of global orientation error in the form of a rotation angle between pre-

dicted and ground truth quaternion is chosen for the evaluation of the framework

performance. Figure 7.9 captures the performance of EKF predictor on average

in terms of overlaid RMSE information across all motion datasets and network

traces. For each given head motion dataset, the RMS error is so consistent across

all network RTT runs, that the variation in the height of the bars is barely visi-

ble. Table 7.6 demonstrates the relative performance gain for both Runavg and

SRTT based EKF predictors over the constant delay prediction.

The performance improvement from network latency tracking is the least for

the third motion profile, consistent with smaller variability in head orientation.

Indeed, it’s reasonable to hypothesize that the increase in the variability of under-

lying data will exacerbate the severity of predictor overshoots and undershoots

in case of constant prediction time interval. In support of this hypothesis, the

ground truth quaternion sequences were converted to the underlying axis-angle

representation and the standard deviation in both is summarized in table 7.7.
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Figure 7.9: Angle RMSE across all data

dataset Const Runavg SRTT Opti

head11 1.0000 1.7702 1.7724 1.7747

head12 1.0000 1.9577 1.9604 1.9632

head21 1.0000 1.9899 1.9951 1.9976

head22 1.0000 2.1941 2.1931 2.1936

head31 1.0000 1.3482 1.3501 1.3504

head32 1.0000 1.6105 1.6117 1.6116

Table 7.6: TIBET for overall framework performance
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The correlation between the heightened variability in both the axis and angle of

dataset α ux uy uz

head11 25.6876 0.2943 0.7488 0.0929

head12 25.7972 0.3357 0.8853 0.1670

head21 36.9928 0.3690 0.8785 0.2047

head22 34.1722 0.3175 0.8867 0.2144

head31 20.0750 0.1969 0.0699 0.1900

head32 13.9617 0.3630 0.2316 0.2970

Table 7.7: Axis-angle standard deviation

rotation and the increase in relative performance improvement becomes apparent.

Finally, the performance of the framework w.r.t. its maximum error in orien-

tation prediction is exposed in figure 7.10. The variation in the height of overlaid

bars is more pronounced for the maximum errors, as expected, but the overall

benefit of variability-aware prediction is clear, echoing that for the RMSE.

7.3 Concluding Remarks

In addition to offering performance advantages in both the average case and

maximum error scenarios, variability-aware predictors also exhibit comparable
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Figure 7.10: Maximum angle error across all data

performance to Opti based compensation. This phenomenon suggests that the

prediction error due to the inadequacy of the model overshadows the error con-

tributed by misestimation of the prediction interval itself. This is expected to

change, however, as the mean network RTT increases, and the misestimation of

current delay becomes more pronounced in the absolute sense. The take-home

point, therefore, is that little if any improvement to the network delay estimator

is necessary for DVE applications running on networks of comparable latency

characteristics, and the focus should fall primarily on the selection of more ac-

curate motion models. As the mean and variability in the latency elevate, the
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gap between the SRTT and Opti based framework performance may indicate the

need to upgrade the network delay estimator as well.
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8 Conclusions and Future Work

8.1 Conclusion

A variability-aware proactive alternative to traditional latency compensation

techniques was described and evaluated. No assumptions of any kind are ei-

ther made or enforced about the dynamics of the network delay to be estimated.

The two-tier predictive framework offered consists of the pose predictor working

in concert with the network delay estimator to perform sender-side prediction of

the events. This work represents the only known technique to compensate for

latency by performing sender-side prediction a variable time into the future.

This approach was evaluated in a simulation through an offline playback of

real head motion data and network RTT delay traces. The simulation is a con-

ceptual improvement over LaViola’s predictive algorithm testbed, where a user

was confined to using a constant look-ahead interval. Statistical evaluation of the

variability-aware predictive framework shows substantial improvements both on
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average and in the worst case over the assumption of constant network delay.

8.2 Implications and Future Work

The framework introduced in this thesis is directly applicable to any form of dis-

tributed VE application that involves time-sensitive collaboration or interaction

of geographically separated operators. Primary examples of such applications

would be military combat and flight simulations and network games. Industrial

tele-conferencing applications, where remote engineers collaborate on the design

or development of complicated machinery may also benefit from proactive latency

compensation. The implications of my research extend beyond the area of virtual

reality, however. It is envisioned to have positive impact on distributed shared

VEs of any kind, including multi-operator multi-robot (MOMR) and tele-haptic

applications in particular. The latter has a direct application in tele-surgery,

where a correctly simulated sense of touch is critical to the success of the opera-

tion [ZSG04].

My research on variability-aware latency compensation is by no means ex-

haustive, however. The framework itself can be improved through a better head

motion model than a traditional kinematic approximation. The non-linearities

of quaternions employed to represent head orientation may also be used directly
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through the implementation of the Unscented Kalman Filter [JUDW95], avoiding

the approximation errors due to Taylor series linearization of the model. Finally,

the network delay estimation can be improved as well, but is subject to fur-

ther research on network latency modeling adequate for short term RTT delay

prediction.

The most immediate extension of this research work is envisioned in the form

of a real testbed. The simulation presented in this thesis was deliberately de-

signed to be more of a playback mechanism with statistical analysis capabilities

in order for its results to be directly transferable to real DVEs. The testbed could

take advantage of the comprehensive in-house suite of VE libraries (VElib) cre-

ated for platform-independent virtual reality application development. A specific

provision of the VElib is the filter chain, allowing a programmer to dynamically

insert custom tracking event filters. My simulation was designed to resemble the

overall VElib filter structure for easier portability to C and real applications in

the future.

Finally, less immediate work of interest includes the implementation of the

compensation framework for a prototype network game. The benefits of sender-

side latency amelioration would then be studied in comparison to performing

commonly accepted compensation techniques in the game industry, such as client-
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side interpolation.

More sophisticated research studies could be conducted on adaptive approaches

to network delay compensation, where a combination of proactive latency ame-

lioration and dead reckoning is implemented. Our framework may be used as

an enhancement or an extension to the traditional compensation algorithms, not

necessarily replacing them altogether.
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A Process Noise Autocorrelation

Process noise covariance matrix expression in eq. (3.6) resulted in the expected

value term E
{

w(ξ)wT (η)
}

. Noting that w(t) is a scalar process, the transpose

can be dropped, resulting in

E
{

w(ξ)wT (η)
}

= E {w(ξ)w(η)} = Rw(ξ, η) =















0, ξ 6= η

E {w2(ξ)} , ξ = η

where Rw(ξ, η) is the autocorrelation function of a stationary process w(t). Re-

calling that for random variable X ∼ N(µ, σ2), E {X2} = σ2 +µ2, which for zero

mean equals σ2 + 0, the expected value term then becomes

E
{

w(ξ)wT (η)
}

= Rw(ξ, η) =















0, ξ 6= η

σ2, ξ = η

= σ2δ(ξ − η)

where σ2 is the variance of the white process noise w(t).

Finally, there’s a known relationship between the variance of the white noise

stationary process and its power spectral density Sw(s) = W . It too can be
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derived from the definition of the latter:

Sw(s) =

∫

∞

−∞

Rw(τ)e−jwτdτ

where Rw(τ) is the same autocorrelation function as the above Rw(ξ, η), which

can be rewritten as a function of the time difference ξ − η = τ for stationary

processes.

Substituting the expression obtained for Rw(ξ, η) into the definition of Sw(s),

the desired relationship becomes apparent:

Sw(s) =

∫

∞

−∞

σ2δ(τ)e−jwτdτ = σ2e−jw·0 = σ2 = W

⇒ E
{

w(ξ)wT (η)
}

= Wδ(ξ − η)

�
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B Quaternion Sequence Perturbation

Section 6.2.2 established the rationale behind approaching orientation data per-

turbation armed with the geometrical interpretation of its quaternion represen-

tation. The multiplication of two quaternions was shown to have an effect of

consecutively carrying out the rotations represented by each. Therefore, quater-

nion measurement sequence derivation was accomplished by generation of a noise

quaternion sequence followed by quaternion multiplication of the ground truth

data by the resulting noise sequence.

The purpose of this appendix is to offer a geometric insight into the opera-

tion of adding white noise to the ground truth data. The result of quaternion

data perturbation can be envisioned as the spherical cone of possibilities for the

resulting orientation of an arbitrary rotated vector ~v (see figure B.1). Any line

segment connecting the origin and a point on the spherical portion signifies a

possible result of rotating vector ~v by a noisy quaternion. The angle of rotation
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Figure B.1: Effects of quaternion noise on rotated vectors
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transforming ~v′, as obtained through a rotation of ~v by ground truth quaternion,

into the mentioned directed line segment is normally distributed with variance

taken from in-house equipment angular RMS specifications. Such geometrical in-

terpretation of quaternion data perturbation could not be found in the literature

and is considered a novel contribution.
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C Quat. Sequence Interpolation Algorithm

Input: p0, p1 — n× 4 arrays of n quaternions

t — n× 1 column vector of interpolation factors

Output: iq — n× 4 array of interpolated quaternions

1. Take a row-wise product of p0 & p1 to obtain an n × 1 vector of cosines:

ct = dot(p0, p1, 2)

2. Find all negative values in ct and store their indices in ind.

3. For each i ∈ ind do

a. reverse the sign of corresponding element in ct: ct(i) = −ct(i)

b. negate the corresponding quaternion in p1: p1(i) = −p1(i)

4. theta = cos−1(ct)

5. st = sin(theta)
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6. Precompute the multiplicative weights for eq. (6.2):

f1 = sin((1− t) .* theta) ./ st

f2 = sin(t .* theta) ./ st

where typical operators preceeded by a period are element-wise.

7. for each column i = 1..4

iq(:, i) = f1 .* p0(:, i) + f2 .* p1(:, i)

The inquisitive reader is directed to more detailed sources of information

on matters related to quaternion interpolation and the duality of quaternion

orientation representation: [Wik06], [Sho85], [Joh03], [Kir92].
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