We study the Unadjusted Langevin Algorithm (ULA):

\[x_{k+1} = x_k - \nabla f(x_k) + \sqrt{2} z_k \]

where \(\epsilon > 0 \) is step size and \(z_k \sim \mathcal{N}(0, I) \) is independent Gaussian. ULA is a discretization of the Langevin dynamics in continuous time:

\[dX_t = -\nabla f(X_t) \, dt + \sqrt{2} \, dW_t \]

where \((W_t)_{t \geq 0}\) is the standard Brownian motion in \(\mathbb{R}^n \).

We say \(\nu \) satisfies log-Sobolev inequality (LSI) with constant \(\alpha > 0 \) if for all probability distribution \(\rho \):

\[H_\nu(\rho) \leq \frac{1}{\alpha} J_\nu(\rho). \]

Here \(H_\nu(\rho) \) is the KL divergence (relative entropy):

\[H_\nu(\rho) = \int_{\mathbb{R}^n} \rho(x) \log \frac{\rho(x)}{\nu(x)} \, dx \]

and \(J_\nu(\rho) \) is the relative Fisher information:

\[J_\nu(\rho) = \int_{\mathbb{R}^n} \rho(x) \| \nabla \log \frac{\rho(x)}{\nu(x)} \|^2 \, dx. \]

If \(\nu = e^{-f} \) is \(\alpha \)-strongly log-concave (if \(f \) is \(\alpha \)-strongly convex), then \(\nu \) satisfies \(\alpha \)-LSI. But LSI is more general than strong log-concavity.

We recall that when \(\nu \) satisfies \(\alpha \)-LSI, along the Langevin dynamics in continuous time, KL divergence converges exponentially fast:

\[H_\nu(\rho_t) \leq e^{-\alpha t} H_\nu(\rho_0). \]

We prove a similar convergence guarantee along ULA in discrete time up to the biased limit, when \(\nu \) satisfies LSI and smoothness.

We say \(\nu = e^{-f} \) is \(\alpha \)-smooth if \(\nabla f \) is \(\alpha \)-Lipchitz (\(-LI \leq \nabla^2 f \leq LI \)). But note we do not assume \(f \) is convex.

Theorem: Assume \(\nu \) satisfies \(\alpha \)-LSI and is \(\alpha \)-smooth. Then ULA with step size \(0 < \epsilon \leq \frac{1}{2L} \) satisfies:

\[H_\nu(\rho_k) \leq e^{-\alpha k} H_\nu(\rho_0) + \frac{c^2 \epsilon L^2}{\alpha}. \]

Suppose we start from \(x_0 \sim \rho_0 = \mathcal{N}(x^*, \frac{1}{L} I) \) where \(x^* \) is a stationary point for \(f \) (\(\nabla f(x^*) = 0 \)), so \(H_\nu(\rho_0) = \tilde{O}(n) \). The theorem above implies the following iteration complexity for ULA.

Corollary: Assume \(\nu \) satisfies \(\alpha \)-LSI and is \(\alpha \)-smooth. For \(\delta > 0 \), to reach \(H_\nu(\rho_k) \leq \delta \), it suffices to run ULA with step size \(\epsilon = \Theta\left(\frac{\frac{1}{L} \epsilon^2}{\delta \alpha^2}n^2\right) \) for the number of iterations:

\[k = \tilde{O}\left(\frac{n L^2}{\epsilon^2 \delta \alpha^2}n^2\right). \]

This is the same complexity as previous results for ULA under strong log-concavity, but our result holds under more general condition (LSI).

We show KL divergence decreases by a constant factor in each step of ULA, with an additional \(O(\epsilon^2) \) error term. Iterating this bound yields the result above with \(O(\epsilon) \) bias.

Lemma: Assume \(\nu \) satisfies \(\alpha \)-LSI and is \(\alpha \)-smooth. Then ULA with step size \(0 < \epsilon \leq \frac{1}{2L} \) satisfies:

\[H_\nu(\rho_{k+1}) \leq e^{-\alpha \epsilon} H_\nu(\rho_k) + \epsilon^2 n L^2. \]

Proof Idea:

1. We compare one step of ULA with the Langevin dynamics.
2. We use Talagrand’s inequality to bound the difference.

We can show when \(\nu \) satisfies \(\alpha \)-LSI, Rényi divergence converges exponentially fast along the Langevin dynamics:

\[R_{\epsilon, \nu}(\rho) \leq e^{-\frac{\epsilon^2 n L^2}{c^2}} R_{\epsilon, \nu}(\rho_0). \]

The theorem case \(q = 1 \) recovers KL divergence: \(\lim_{q \to 1} R_{\epsilon, \nu}(\rho) = H_\nu(\rho) \). Rényi divergence is a family of generalization of KL divergence which is stronger (\(q \to \nu \) is increasing). It has fundamental applications in statistics, physics, computer science (e.g., for differential privacy).

Rényi divergence of order \(q > 0 \) (\(q \neq 1 \)) of \(\rho \) with respect to \(\nu \) is:

\[R_{\epsilon, \nu}(\rho) = \frac{1}{q - 1} \log \int_{\mathbb{R}^n} \rho(x)^q \nu(x)^{1-q} \, dx \]

We show Rényi divergence converges exponentially fast along ULA to the biased limit \(\nu \).

iteration complexity is determined by the bias \(R_\nu(\rho_0) \).