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1 Surveillence

Surveillance can be performed on populations in different stages of illness progression, as
shown in Figure 1 [12].

Figure 1: Surveillance data source hierarchy: The pyramid represents stages of illness
progression, with size proportional to the population count. Each level is linked to predictive
modeling datasets: left side shows direct disease tracking, while the right highlights indirect
epidemiological indicators [12]

In the realm of data handling, diverse methodologies are essential. For the surveillance
of platforms such as search engines, social media, symptomatic surveys, and digital medical
and wellness devices, we employ Machine Learning (ML) techniques. These surrogate data
sources present a spectrum of attributes: advantageous, detrimental, and some with poten-
tial pitfalls. It’s crucial to understand that shifts in distribution profoundly influence ML
approaches. Such distributional variations, especially in public health contexts, can sub-
stantially change search query outcomes. It’s noteworthy that many of these data sources
are very sensitive to distributional changes.

Proposals for influenza surveillance:

• Search Queries: Example: “Miley Cyrus cancels Charlotte concert due to flu.”
It’s important to note that search queries are influenced by public health-related
distributional shifts.



• Over-The-Counter (OTC) Medication Sales: Sales metrics can be skewed by
various factors, including discount sales, hoarding, lack of patient-specific data.

• Wikipedia: There is a lack of specificity about visitor locations.

• Digital social media data (like Tweets): There is a lot of evidenced challenges
of utilizing digital data. A principal concern is that attention-grabbing data may not
necessarily stem from reliable and validated instruments.

No solution has yet been identified. Without human interaction, there is no dataset
that can be used that will produce the desired outcomes. Caution has be taken while im-
plementing such approaches.

2 Nowcasting

Nowcasting, as introduced by Choi and Varian in 2012 [4], aims to predict the present, a
concept contrasting with traditional forecasting. Government agencies periodically release
indicators; however, these releases often come with a reporting lag of several weeks and are
typically revised a few months later. Despite the digital age, accessing real-time data, such
as the current number of active COVID cases, remains challenging. Thus, both health-
related data and even social media data have inherent reporting lags. Recognizing these
challenges, there has been an increased reliance on private sector companies that provide
real-time economic activity data to fill these gaps.

Incorporating data science into epidemiology, nowcasting employs both statistical and
machine learning models to make these real-time predictions. The intuition behind now-
casting is to choose the optimal function from a family of functions that best approx-
imates the forecast target based on input data. Specifically, the goal is to minimize
minf∈H

∑T
i=1 L(f(xi) − yi), where L is the loss function, f is the chosen function from

family H, and T is the total number of data points. This approach closely mirrors forecast-
ing. The main distinction is that while forecasting predicts future values using current data,
nowcasting is rooted in the present, leveraging surrogate data sources to approximate the
now. Despite similarities in their machine learning models, certain techniques, like regres-
sion, are more prevalent in nowcasting. Moreover, nowcasting places a stronger emphasis
on diverse data sources and indicators compared to traditional forecasting.

3 Google Flu Trends

Introduced in 2009 by Ginsberg et. al. [6], Google Flu Trends (GFT) was a pioneering
system that leveraged health-seeking behavior monitoring through Google queries. This
nowcasting system started with 50 million candidate queries, which were meticulously re-
fined to a set of 45 that most accurately mirrored the CDC ILI data in the US. Not merely
a statistical venture, the development of GFT was a blend of both automated and manual
efforts, as queries that correlated with the flu season were hand pruned. Relative query
volumes (with respect to weekly search volume per location) were used as independent vari-
ables. This process of refining began with those 45 queries, further categorizing them into
distinct classes. This idea was previously explored with Yahoo queries by Polgreen et. al.
[11].
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The model in GFT was a simple linear model for nowcasting ILI. It utilized the search
logits of query fractions as features, defined by the equation:

logit(P ) = β0 + β1 × logit(Q) + ϵ

where P represents ILI (physician visits) and Q denotes the fraction of search queries that
are ILI-related. While GFT made use of an automated, correlation-based selection system,
it strictly did not reveak specific queries as a key design element, to avoid the introduction of
bias to the public but also due to the sensitive nature of some queries. Despite this, Google
provided a transparent dashboard, making the trends accessible to all, thus ensuring the
model’s efficacy.

GFT vs. Traditional Surveillance

Google Flu Trends (GFT) was initially created as a system that aimed to detect flu
trends faster than traditional surveillance methods. The method utilized the analysis of
search query data to provide near real-time estimates on flu activity. In early stages, GFT
showed promising results, as evidenced by Ortiz et. al. [10]. It was compared to the US
Influenza Virologic Surveillance data and CDC ILI surveillance data. The correlation with
CDC ILI data, in particular, was as high as 0.94 up to the 2009 H1N1 pandemic.

Shortcomings during the H1N1 pandemic and the H3N2 epidemic

However, the system was not without its flaws. During the 2009 H1N1 pandemic,
GFT failed to capture changing trends in keyword correlates and did not handle data drift
effectively, as evidenced by Olsen et. al. [9]. It completely missed the first wave of the
H1N1 pandemic flu. Additionally, when GFT was evaluated at different geographic scales
- national (US), regional (mid-Atlantic), and local (New York city) - it showed misleading
correlations. GFT displayed a particular limitation when trying to extrapolate data from
these densely populated areas to other regions, suggesting that GFT’s prediction model
might not be as robust across various geographic scales, as exemplified in Figure 2 for Latin
American countries.

Attempts were made to fix the shortcomings of GFT post the H1N1 pandemic. However,
during the H3N2 epidemic in 2012 and 2013, GFT faced another significant challenge.
Despite the improvements, the system overestimated the intensity of the H3N2 epidemic.
This error demonstrated that while the prior issues might have been addressed, new ones
emerged, highlighting the challenges of relying solely on digital surveillance methods like
GFT.

One of the major challenges faced by GFT was its susceptibility to external influences
such as news articles. A surge in flu-related news could lead to an increase in related
search queries, leading to false alarms since the actual flu activity wasn’t spiking. More-
over, Google’s search algorithm was not static; it evolved over time. This dynamic nature
of the search algorithm meant that the health-seeking behavior of the population was also
constantly changing. Such shifts further complicated GFT’s predictive accuracy. Further-
more, there was an issue of transparency with the search terms GFT utilized. The exact
terms and their weightage within the algorithm were not made public. This lack of trans-
parency meant that when things went wrong, researchers and public health experts couldn
not precisely identify the problematic search queries or terms. This showcased the need for
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blending digital surveillance data with traditional epidemiological methods to get a more
accurate picture.

Figure 2: Google Flu Trends for Latin American Countries: This graph depicts the
trends of flu in Latin American countries. The comparison between raw GFT data and
scaled GFT data against the PAHO (Pan American Health Organization) data indicates
the relatively poor accuracy and adaptability of the GFT model in different regions.

The final straw: GFT’s Demise and Subsequent Efforts

For the two years ending Sep 2013, GFT’s estimates were high in 100 out of 108 weeks.
After the October 2013 update, discrepancies in GFT’s predictions reached concerning lev-
els, with estimates deviating by as much as 30% during the 2013-2014 flu season [8]. Such
significant inaccuracies led to waning trust in the tool, and it was soon realized that GFT
was no longer a reliable source for flu trend predictions. Consequently, Google decided to
shut down GFT. In a subsequent effort to refine the model and address its shortcomings,
Google reached out to independent research groups, inviting them to collaborate and work
on improving the system.

Future improvements to GFT

The main improvements made to Google Flu Trends (GFT) were aimed at refining its
accuracy and adaptability, including:

1. Inorganic Query Filtering: GFT was updated to ignore inorganic queries that
arose from heightened media coverage. Such queries, often unrelated to actual flu incidence
but more about public curiosity or panic, could skew the results. Techniques like long-term
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and short-term spike detectors were introduced to identify these aberrations.

2. Model Drift Handling: Another challenge was the model drift over time. To
combat this, GFT was regularly updated. The system was retrained every flu season, and
regularized parameters or regularizers were introduced to prevent overfitting and stabilize
the predictions.

Although the dictionary used for GFT was effective for English-speaking countries, it
lacked resources for other languages. This posed a challenge, particularly when trying to
predict flu trends in non-English speaking regions. To address this, a new dictionary was
designed, which was backed by:

- Pseudo Query Expansion Methods: These methods help in defining custom
queries. It began with gathering queries from flu-related datasets sourced from health
ministry websites, tweets, and news articles.

- Google Correlate: This tool was used to align the volume of keyword search queries
with the PAHO (Pan American Health Organization) time series data. It offered insights
into how well the search terms corresponded with actual flu trends, as shown below in
Figure 3.

After these refinements, GFT showed better compatibility with multiple languages and
was better aligned with query expansion techniques.

Figure 3: Automatically Discovered Words in GFT with new dictionary: This
chart showcases the correlation between certain symptomatic, medicinal, and other inter-
esting search queries in relation to flu trends in Argentina. The inclusion of diverse terms
like ”bronquitis” and ”claritromicina” highlights the expanded lexicon of the dictionary.
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Figure 4: Performance Comparison of Refined GFT Model: This graph provides
a comparison with Figure 2 of the GFT’s performance post dictionary enhancement. The
alignment between PAHO data and the fitted GFT model indicates a significant improve-
ment in prediction accuracy for Argentina’s flu trends.

4 Food borne illness detection

There is a novel approach, implemented by Sadelik et. al. [13] that uses ”machine-learned
epidemiology” for real-time detection of foodborne illnesses at scale. The method applies
ML models to analyze Google search queries and location logs to determine which restau-
rants might have significant food safety violations like poor sanitation, leading to foodborne
illness outbreaks. The data used for this analysis is aggregated and anonymous, sourced
from users who have opted to share their location data.

Approach for Detection:

The system identifies search queries that suggest a foodborne illness (e.g., symptoms like
food poisoning). It then cross-references these queries with the history of previous location
data to pinpoint restaurants the users in aggregate might have visited before showing signs
of illness through their search queries. The system calculates, for each restaurant, the pro-
portion of users who visited and later showed symptoms, which might suggest a potential
outbreak. However, a user’s location is deduced only if they performed a search or posted
a message from that location.

Challenges in the Data:
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One of the primary challenges in utilizing this method is the inherent noise and ambiguity
present in individual search queries. Users frequently visited several restaurants, making it
difficult to ascertain which specific establishment might be the source of a potential illness.
Moreover, searches for symptoms akin to food poisoning could arise from various causes.
To address these complexities, an algorithm was developed to narrow down the potential
sources. This algorithm, resembling a voting or message passing system, calculated the
proportion of users who visited a particular restaurant and subsequently exhibited signs of
illness.

A significant aspect of this study was its reliance on passive data, such as location in-
formation from users. The collection of passive data imposes a heightened sense of respon-
sibility due to privacy concerns. To ensure user privacy, a supervised, privacy-preserving
machine-learned classifier was implemented. This classifier evaluated multiple signals be-
yond just the search query, including:
- The search results displayed in response to the query.
- Aggregated data on which search results users clicked.
- The content of web pages accessed from those search results.

This study was implemented in Las Vegas and Chicago. This method has a more
targeted approach to testing the restaurants which caused a significant reduction in the
amount of work needed. The results of this study are shown in the pie chart below in
Figure 5. As observed, a significant 62.0% of the illnesses can be attributed to the most
recently visited restaurant, indicating a strong correlation between the most recent eatery
visited and the onset of symptoms. The subsequent decrease in percentages for the 2nd,
3rd, and 4th or later visits suggests that the likelihood of a restaurant being the source of
foodborne illness diminishes as we move further back in a user’s visit history.

Figure 5: Results of food-borne illness detection and attribution: This pie chart
showcases the distribution of the frequency with which illnesses were attributed to the most
recent restaurant visits.
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5 Nowcasting with twitter

The advent of digital data collection has paved the way for numerous approaches to data
analysis, with social media platforms becoming particularly significant. Building on the suc-
cess of prior methodologies, researchers have increasingly leveraged data from social media
platforms, notably Twitter, for nowcasting purposes. One significant investigation by [5]
delved into techniques reminiscent of Google Flu Trends (GFT), aiming to predict Influenza-
Like Illness (ILI) case counts using Twitter data. Their methodology integrated geolocation
to concentrate on specific regions and employed document filtering to discern ILI-relevant
tweets. Subsequent regression analyses revealed that employing multiple keyword indepen-
dent variables resulted in enhanced performance compared to the simple linear regression
as was adopted in GFT. Specifically, a Lasso-based linear regression model incorporating
n-grams as features proved effective in case number predictions.

Furthermore, the research presented by [14] underscored the utility of Twitter data dur-
ing the H1N1 pandemic. Tweets with geolocation, tagged based on US domestic locations
and encompassing flu-related keywords, were collected. This raw data underwent refinement
by eliminating stopwords and applying stemming processes. Utilizing the derived keywords,
a new lexicon was established. Support Vector Regression was subsequently employed to
correlate these dictionaries with CDC ILI rates. This model was trained on data from nine
out of the ten CDC US regions and assessed on the tenth.

In the wake of challenges associated with Google Flu Trends, particularly concerning
data gripes and shifts in distribution, subsequent investigations like the one by [3] pivoted
towards a more content-oriented analytical paradigm. This led to the application of coding
rules to classify tweets. Some illustrative categories of such content categorizations are
shown as examples in Figure 6 below. The hypothesis was that only a subset of tweets were
actually useful whereas a smaller subset of tweets were spam. It was found that 52.6% of
the tweets were about news and information and 4.5% were misinformation.

Figure 6: Content Categorization of Tweets [3]: Classification of tweets with respective
descriptions and illustrative examples for H1N1 content categorization

Therefore, some recent studies such as [1] have delved into the intricate process of multi-
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level tweet classification. As depicted in the image on the left side of Figure 7 shown below,
tweets undergo a sequential filtration process involving multiple filters to ascertain their
relevance or weed out extraneous content. Subsequent to this filtering, a regression was
executed based on the infection detection algorithm. The results for this during the 2012-
2013 influenza season are presented in the graph on the right side of Figure 7. Observing the
graph, it becomes evident that the infection detection algorithm exhibits a trend that closely
mirrors the CDC data, underscoring its potential utility in tracking influenza outbreaks.

Figure 7: Multi-level tweet classification [1]: Classification of tweets after multi-level
filtration (left) and comparison of infection detection algorithm with CDC data for the
2012-2013 influenza season (right)

Many other approaches have followed this method of filtering out unrelated data. For
example a paper by Lamb in 2013 [7], tries to develop further distinctions by trying to
distinguish between infection vs concerned awareness by building meaningful classifiers and
building parts of speech templates from world class features.

Figure 8: Parts of speech templates [7]: Word classifications used to break down tweets
for processing
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The paper ”Flu Gone Viral” by Chen et. al. [2], proposes a temporal topic model for
inferring the biological state of the user and an EM algorithm for modelling the hidden
epidemiological state of the user (S, E, I, R). The Hidden Flu State from Tweets (HSFTM)
model generates the state form the tweet and then the topic from the word. Then EM
algorithm is used to infer the topic distributions and state transition probabilities. This
method may suffer from large noisy vocabulary and can be improvised by introducing an
already curated list of keywords from an expert.

Figure 9: SEIR model [2]: A model depicting how a typical SEIR/SEIS model (with
states: Susceptible, Exposed, Infected, Recovered) would overlap with a model that uses
tweet classification to detect viral spread in a population, including example tweets of what
one could expect at each stage

Figure 10: HFSTM and State Transition: A model showing how the HFSTM and
State Transition models can be used to probabilistically create tweets in different states
using words that have been pre-categorized
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Figure 11: Learned word distributions: The most probable words learned in each state

Data obtained from PAHO was considered as ground truth. The number of keywords
were counted as as features and the ground truth curve was regressed. Google flu trends
data was used to regress the PAHO curve. Using the HSFTM, they distinguished the states
of the keywords, and only the keywords in I state were identified the again used to regress
to PAHO. The model can learn transition probabilities (S, E, I, R). This model is observed
to learn transitions well.

6 Tracking COVID-19 with Online Search

This study uses time series of online search query frequencies to gain insights about the
prevalence of COVID 19 in multiple countries. They first built unsupervised modeling
techniques based on associated symptom categories identified by United Kingdom’s Na-
tional Health Service and Public Health England and then they created an online search
time series. One of the challenges was to clean the data. They tried to minimize an expected
bias in these signals caused by public interest. Symptom categories were weighted based
on their reported ratio occurrence in cases of COVID-19. They reduced the effect of news
via autoregression. Their study confirms the unsupervised approach’s insights and demon-
strates how early warnings may have been gathered from areas that had already felt the
effects of COVID-19. Then they conducted a correlation and regression analysis to uncover
potentially useful online search queries that refer to underlying behavioural or symptomatic
patterns in relation to confirmed COVID-19 cases.The output of this model provides useful
insights including early warnings for potential disease spread, and showcases the effect of
physical distancing measures.

To reduce the effect of news via autoregression, for the weighted score of symptom-related
online searches g = gp + gc, where gp is infected users and gc is concerned users, then there
exists a constant γ ∈ [0, 1] such that gp = γg and gc = (1 − γ)g. On any given day the
proportion of news articles about the COVID-19 pandemic is m ∈ [0, 1], then AR(g,m) is
an autoregressive function on g and m defined as:
arg minw,v,b2

1
N

∑N
t=1(gt − w + 1gt−1 − w2gt−2 − v1mt − v2mt−1 − v3mt−2 − b2)

2
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Figure 12: Early warning signal - Online searches precede reported confirmed cases
by 16.7 and deaths by 22.1 days: A model showing the confirmed COVID-19 cases, the
symptom-related search frequency weighted for news effect, and the confirmed COVID-19
cases shifted to where they best line up with the weighted searches.

Figure 13: Results of the model: A graph showing the historical trend of symptom-
related search, that years’ trend of searches both weighted and weighted with minimised
news effects, and when that year physical distancing measures and lockdown measures were
put in to place
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