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1 Summary of the lecture

In the previous lecture, we learned the importance of modeling. Modeling allows us to use
otherwise limited or noisy data to forecast future behavior, and as a result guides decision
making and prevention/intervention for various diseases and infections. This lecture covered
two kinds of models: the metapopulation models and the Network-based models. While the
metapopulation models extend from the SIR ODE model that they do not assume a com-
pletely homogenous population, they also do not assume complete heterogeneity. Instead,
they contain spatial structures while not including all the complications by assuming homo-
geneity at sub-population levels. We also discussed the example stochastic metapopulation
model and ways to calibrate the models, including commonly used optimizers in this area.

Next, we discussed the basics of networks and network-based models. These models are
more granular than SIR and metapopulation models because they incorporate structured
human contact patterns. We define the structure of a network and explore properties of
networks, including the friendship paradox. The simplest network-based epidemiological
model is random trees, where a patient meets d others and infects them with probability q.
We derive conditions under which the epidemic dies out or runs on forever.

2 Metapopulation Models

Metapopulation models are models which assume a combination of homogeneous and het-
erogeneous populations. They assume that people living in regions of certain small gran-
ularity (such as a city, zip code, county, etc.) are the same, or homogeneous, but that
people across different instances of this granularity (different cities, different zip codes, etc.)
may be different, or heterogeneous. This granular heterogeneity could be modeled using
inflow and outflow travel data of different regions, as global epidemic behavior is typically
governed by long range traffic between regions moreso than the local traffic. The equation
below shows that the expected level of susceptible people in a region at time t (Xeff

i (t)) is
composed of people present in the region at time t (Xi(t)), plus the summation of inflow of

people(
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Where σij represents the flow of people from region i to j and vice versa. ni is the population
of city i which is assumed to be fixed. And Xi(t), Yi(t), and Zi(t) are the number of people
in Susceptible(S), Infected(I), and R(Removed) states in city i at time t. From the equation

above, we can also write out similar equations for Y eff
i and Zeff

i .
The challenge of the metapopulation models includes discretization and time scale. In

real life, the discretization level may not be clear. Model may be designed for city/county



level, but while data may be from state level. The time scale of disease and travel may be
mismatched. For example, it is hard to take into account whether people come home at the
end of timestep and to define a clear cutoff for what to consider as exposure, or duration
of infectiousness. Regarding this type of question, cross correlation with census data may
be helpful.

2.1 Example: Stochastic metapopulation models

Stochastic metapopulation models enabled studies in global epidemic behavior. One of the
examples is the Global epidemic and mobility model (GLEaM), which was motivated to
model mobility between cities defined by airline commutes [1]. Airline traffic data was used
to derive effective passenger flow, which was then used to fit the models.

We then introduced the Susceptible-Latent-Infectious-Recovered (SLIR) model. The
SLIR model contains compartmental scheme (Figure 1) and is typical for influenza-like
illnesses (ILIs).

Figure 1: SLIR Model. Those in a population that are susceptible to an illness can be
infected by others who are infected and asymptomatic, traveling, or not traveling. If they
are infected, the infection can remain latent before it eventually spreads through the afore-
mentioned subpopulations and the population eventually recovers.

The GLEaM model found that global epidemic behaviour is governed more by long
range traffic, and that neighboring regions demonstrate epidemic coupling. For example,
an outbreak in Arizona may be caused by people traveling from California. It shows that
spatial structure is important but neglecting local coupling if focusing on global pattern
does not produce a dramatic effect.

Extending GLEaM model to study COVID-19, researchers found that in the initial
stages of pandemics, the data collected are noisy and incomplete. Thus the group focused
on studying imported cases and ignoring local transmission records. They discovered that
at the level of countries, before the Wuhan travel ban, most cases are imported from Wuhan;
Post travel ban, most cases are imported from other cities. This kind of study help under-
stand policies like travel bans.
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2.2 Calibration

Calibration refers to the process of setting parameter values in mathematical models so the
predictions derived from them are as accurate as possible. Parameters have a large influence
on the accuracy of our models. If we are calibrating for a SIR model, we will calibrate for
the rate of infection(β), rate of recovery(σ) as well as initial susceptible population(S0), and
the initial infected(I0). We can write the equation as follow:

{β∗, σ∗} = arg min(R(t)−Robserved(t))
2 (2)

Typically available data for calibration will be previous infection data like time series of
new cases from surveillance. These data have drawbacks including missing data, containing
biases, and lags and are often high leveled data that are under-specified. In the case of
COVID-19, using infected cases is unlikely to be robust due to delays and the quality of
data. Instead, using mortality and hospitalization is likely to be more accurate.

Parameters are often motivated by biology and epidemiological data, they help our
models fit the observed data. Our models should be able to model uncertainty in the data
by going through multiple stochastic calibrations.

2.3 Optimizer

Optimizers applied in epidemiology are the same as optimizers for other subjects in science.
Some most commonly used optimizers are Non-linear optimizers. Nelder-Mead is one of the
most popular optimizers and is gradient-free [4]; Levenberg Marquardt solves nonlinear least
squares and is very similar to gradient descent [3]. Powell optimizer performs direct-search
along each direction until coverage [5]. Broyden-Fletcher-Goldfarb-Shanno algorithm also
is a gradient descent optimizer and determines descent direction by conditioning gradient
with curvature [2].

Another class of optimizers is the Bayesian optimizer which uses probability to perform
optimization. This type of optimizer includes Markov chain Monte Carlo, maximum like-
lihood by iterated perturbed Bayes maps, approximate Bayesian computation, and probe
matching. All of the above optimizers are available as python packages.

3 Network-based Models

A limitation of the models we have discussed thus far is they assume that human contact
patterns are homogeneous among a population or a sub-population. In reality, human
contact patterns are very structured, and network-based models are able to incorporate
these structures.

3.1 Friendship Paradox

We will first examine an interesting phenomenon that exists in networks. A recent Facebook
study determined that an individual user’s number of friends was less than the average
friend count of their friends 93% of the time. Users had an average of 190 friends, while
their friends averaged 635 friends. This phenomenon is almost always true in networks.
This can be shown using a small example:
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Emily

Lisa

Thomas John

Here we will do 2 calculations: the average number of friends that each person has, and
the number of friends of friends that each person has. The average number of friends per
person here is:

1 + 3 + 2 + 2

4
=

8

4
= 2 (3)

Now we count the friends of friends. Emily has 3 friends of friends through Lisa, Lisa has
5 friends of friends through Emily, Thomas, and John, and Thomas and John each have 5
friends of friends through Lisa and each other. The average number of friends of friends
here is:

3 + 5 + 5 + 5

8
= 2.25 (4)

Here we can see that even in this small example, the average number of friends of friends
for each person is higher than each person’s average number of friends. This can be further
proved using the following calculations:

Assume there are N number of people in a network and each person has xi friends, where
i = 1..N . The average number of friends and variance is:

E[X] =

N∑
i=1

xi/N (5)

V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2 (6)

The average number of friends of friends is approximately:

E[X2]

E[X]
= E[X] +

V ar[X]

E[X]
≥ E[X] (7)

Therefore, we see that if there is any spread in the number of friends (i.e., V ar[X] > 0)
the average number of friends of friends is greater than the average number of friends.

The friendship paradox is an interesting phenomenon of human interaction, but it has
practical implications in epidemiology. For example, you would like to immunize a subset
of a population and target those with a large number of friends. Rather than randomly
selecting individuals to be immunized, it is more effective to randomly select individuals
and to immunize one of their friends. This strategy is called ”acquaintance immunization”.
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3.2 Network Basics

A network is a structure of nodes with relationships connecting the nodes. These nodes
(N), or vertices, are connected by edges (E), or links, to form a graph G(N,E). This graph
is a mathematical representation of a real network system.

3.3 Which representation?

There are several different kinds of representation that can be chosen from depending on the
network’s use case. For instance, a professional network can be used to connect people who
work together, or a co-author network can be used to connect authors with their respective
research papers. The formulation of a real system into a mathematical graph is up to the
modeler, who has the choice of how to model the system. The choice of formulation is
important, and should be based around what outcomes the modeler wishes to produce.

3.4 Undirected/Directed graphs

A graph may be undirected, where the edges are symmetrical across the two nodes they
are connecting. Examples of these types of connections are friendships on Facebook, col-
laborators, or meetings. A graph may also be directed, where the edges are directed from
one node to another. Examples of these types of connections are followers on Twitter, or a
phone call.

An undirected graph may also be connected (Figure 2), where there exists a path between
any two nodes. We call the largest connected component of a graph the giant component. A
directed graph may have strong or weak connectivity. Weak connectivity indicates that, if
edge directions are disregarded, the graph is connected (Figure 3), while strong connectivity
indicates there exists a path between any two nodes (Figure 4).

Figure 2: Undirected, Connected Graph. All edges are bidirectional, and there exists a
path between any two nodes.

Figure 3: Directed, Weakly Connected Graph. All nodes are connected with monodirec-
tional edges, but there doesn’t exist paths between all pairs of nodes.
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Figure 4: Directed, Strongly Connected Graph. All nodes are connected with monodirec-
tional edges, and there exists a path to and from any node.

3.5 Classical Network Models

Network models capture simple local properties such as degree sequencing and clustering
coefficients. These models provide analytical tractability in which bounds and theorems can
be proven, baselines (null models) to compare against, and realistic network generation.

3.5.1 Erdos-Renyi Model

The Erdos-Renyi model, G(n,p), is a model in which each edge, e = (u, v), is selected
independently and with probability p.

3.5.2 Chung-Lu Model

The Chung-Lu model, G(w), is a model in which each node vi ∈ V has an associated weight
wi for i = 1..n. Each edge (vj , vk) is selected independently with probability proportional
to wj ∗ wk.

3.5.3 Generative/Incremental Models

Generative, or incremental, models are models in which a new node v connects to earlier
nodes u with probability proportional to the degree of node u, where the degree of a node
is the number of edges connected to that node.

3.6 Random Trees

The simplest type of epidemiological network-based model is an epidemic on random trees.
In this model, a patient meets d other people and infects each one with probability q > 0.
The epidemic spreads if any of the d other people are successfully infected, and they in turn
meet d more people and infect them with the same probability, q > 0.

Patient

1

1 2 . . . d

2

1 2 . . . d

. . . d

1 2 . . . d
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Figure 5: Each patient has a set of d people that have probability q of being infected, and
each of those people have their own set of d people who they may infect with q probability.

This model is highly simplified, and has the limitation that the patients will eventually
run out of new people to meet and infect. This model also assumes that there are no
interconnected links.

This model is reasonable as the start of a pandemic where we can assume very few
people are infectious. We can find values of d and q for which the epidemic will not die out.
An epidemic will not die out if

lim
h→∞

P [infected node at depth h] = lim
h→∞

ph > 0 (8)

Where,
ph = 1− (1− q ∗ ph−1)

d︸ ︷︷ ︸
prob no child at depth h gets infected

(9)

To solve for this limit, we can find the fixed point p∞ where

lim
h→∞

ph = p∞ = 1− (1− q ∗ p∞)d = f(p∞) (10)

Some properties of this f(x) = 1 − (1 − q ∗ x)d, where f(x) is the probability of an
infected node at a certain depth and x the probability of an infected node at the depth
before, are:

1. f(0) = 0. If the probability of there being an infected node at any given depth is 0,
the infection can’t be passed down to further depth.

2. f(1) = 1− (1− q)d < 1. Even if the probability of there being an infected node at a
certain depth is 1, indicating that there’s a guarantee that someone is infected, there’s
no guarantee that a node will get infected at the next depth, thus < 1

3. f ′(x) = q ∗ d(1− qx)d−1. This derivative indicates whether the probability of infected
nodes at subsequent depths is increasing or decreasing. Essentially, this indicates
whether the spread of infection is speeding up or slowing down.

Thus, f ′(0) = q ∗ d so f ′(x) is monotone decreasing on [0, 1].
If f ′(0) = q ∗ d < 1 the epidemic will die out, thus when q ∗ d < 1, limh→∞ ph = 0. Note

that q ∗ d = the expected number of people each patient infects, which is equivalent to the
reproductive number R0 = q ∗ d.

3.7 SIR Network Models

We can generalize nodes to have three possible statuses: Susceptible, Infected, and Re-
moved. Thus, as in the simple SIR model, a node may become infected by a connected
infectious node with probability β and an infectious node may recover with probability δ.

At the beginning of an outbreak, the susceptible population drops as they become
infected, leading to an increase in the infected population. The infected then start to either
recover, or pass away, leading to the increase in the removed population while the infected
population eventually decreases.
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Figure 6: Example of SIR model. Blue nodes represent susceptible population, green nodes
represent the initial infected population with red nodes representing subsequent infected
people, and grey nodes representing those who have recovered. As time goes on blue nodes
continually disappear and red nodes start to become more prominent. However, towards
the end, red nodes have also disappeared in place of grey nodes that have recovered
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