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1 Overview of Dynamics of Models

In this lecture we broadly covered the Dynamics of Models: looking at how models behave
long-term and what factors influence their long-term behavior. In particular, we are focus-
ing on Thresholds and Stability Points with respect to single-virus models and competing
contagion models.

Thresholds are boundary points where a model’s long-term behavior goes from one phase
too another phase (e.g. dying out vs epidemic). Stability Points are positions a model tends
to return to or oscillate around over the long term regardless of perturbations. In addition
to Threshold and Stable points there are also Unstable points. Perturbations to these points
tend to lead to large changes in model behavior. In order to better understand this behavior
this lecture introduces us to a couple of concepts to make it easier to analyze such system
in the context of a more general framework.

The first concept is the generalized S*I*V* model which can be seen as a more general
model that encompasses SIR, SIS, and SIRS models. The second concept introduced is the
idea of Effective Strength. The third concept introduced is the idea of modelling epidemics
as networks being modified by an Non-Linear Dynamic System (NLDS)



1.1 A Fundamental Question

How do we determine a condition where a virus will go extinct quickly regardless of the
initial infection conditions? We can determine this condition mathematically by finding a
threshold at which a given virus will either go extinct or become invasive.

Establishing this threshold for a given virus is important for multiple reason. For ex-
ample, when a virus is below a threshold, we might not have to ’worry’ so much and take
less precautionary steps, such as social distancing and lock-downs, to reduce its spread. Or
when it is above the threshold, we can consider stronger measures like vaccination efforts.
It can also help enhance forecasting of ’what-if’ scenarios.

An example of such threshold behavior can be seen in figure 1.

Figure 1: Black line indicated threshold tipping point where below the line a virus would
go towards extinction and above the line would move towards and epidemic. [3]

In addition to threshold points, we can also look at stable, unstable, and neutral points.
Stable points are characterized by the fact that small perturbations to the system will
not lead to large changes in long term behavior. Unstable points are characterized by the
fact that large perturbations to the system will lead to large changes in long term behavior.
Finally neutral points are characterized as neither stable nor unstable. They can be thought
of as a ball on a flat plane or a phase plot full of dots (zero magnitude trajectory arrows).

Figure 2: Stable, unstable, and neutral points [6]

2 Model Generalization

All of the SIR, SIS, SIRS,... models that we have looked at so far can be seen as specialized
forms of a more general S*I*V* model where they can be an arbitrary number of ”suscep-
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tible” S states, one or more ”infections” I states, and zero or more ”vigilant” V states. An
outline of this general state transition graph can be seen in figure 3.

Figure 3: Diagram outlining the S*I*V* transition diagram. [5]

As seen in figure 3, ”Susceptible” states can transition to ”Infected” states via ”Ex-
ogenous” transitions that depend on the states of neighbors, and ”Infected” states can
revert back to an ”Susceptible” state via an ”Endogenous” transition that can happen in-
dependently of neighboring states. ”Infected” states can transition to ”Vigilant” states
via Endogenous transitions. Finally, ”Vigilant” and ”Susceptible” states can endogenously
transition between each other.

To form the more specific models such as SIR and SIS, we just restrict the number
of states and transition pathways accordingly. For example an SIR model can be viewed
as an S*I*V* model with just one susceptible state, one infectious state, and one vigilant
state (recovered); where the transition pathways between each state have been restricted
to an exogenous infection pathway from the susceptible state and the infected state, and a
recovery endogenous pathway between the infected state and the recovered state.

Figure 4: The state transition diagram for an SIR infection model.[7]

3 Thresholds for arbitrary static networks

A long standing question in epidemiology has been determination the epidemic threshold,
which has been defined in the literature as, ’the minimum level of virulence to prevent
a viral contagion from dying out quickly’ [5]. Given that the epidemic threshold can be
challenging to determine depending on a contagion’s virulence. In this lecture, we were
introduced to a generalized framework for analyzing thresholds for static graphs based off
of a factor called Effective Strength (s), which can be thought as similar, if not the same, as
the reproductive number (R0) which we have learned of in previous lectures. Thus, if s <
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1 it is below the threshold for mass spreading event, if s > 1 then it is above the threshold
for an epidemic, and if s = 1 then it is at a tipping point [5].

The Effective Strength factor (s) consists of two components, λ (the largest eigenvalue
of the network’s adjacency matrix) and some constant CV PM that is dependent on the virus
propagation model being used.

s = λ ∗ CV PM

The constant CV PM typically consists of constants describing the state transition prob-
abilities between the various epidemic states. For example, if we consider the SIS model,
then:

s = λ ∗ β

γ

where γ is the recovery probability, β is the viral transmission probability, and λ is the
largest eigenvalue determined in from the network’s adjacency matrix (A).

Other effective strength formulations can be found in the table in figure 5

Figure 5: Table containing the effective strengths for various Virus Propagation Models. [5]

3.1 A deeper dive into λ

If we consider the fact that an adjacency matrix represents all connections between all
nodes in a graph, then the largest λ value of an adjacency matrix represents the strength
of connectivity [4] between all nodes in the graph. For example, figure 6 shows how λ is
empirically correlated with higher levels of inter-node connectivity within the given graph.

Figure 6: Diagram illustrating how higher λ values are correlated with higher inter-node
connectivity in a graph. [5]
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When we examine the graphs from Figure 6a and b, each graph has an equal number of
nodes and edges, and there respective λ values are relatively close in value. However, Figure
6c has the same number of nodes but has more edges and thus is more connected. From
graphs a and b, we determine that what influences the strength of λ is not the number of
edges but the way nodes are connected. In the Chain graph, for any susceptible node to
be infected at a future time point, an infected node can only infect its neighbor node(s) as
their connection is linear. From the Star graph, if the central node is infected then there
is a higher probability that in will infect at least one node it is connected with. However
if the central node moves to the recovered state before infecting other nodes, the infection
will die out and its connected nodes will not become infected. However, when we examine
Figure 6c, we can see that the connection between every node increases the likelihood that
all nodes will eventually become infected at some future time point. Finding the largest λ of
each graphs adjacency matrix shows a strong correlations with the strength of connectivity
within a graph. Overall, what λ tells us is that the chance of an epidemic increases when
the inter-node connectivity is high, especially when λ is large. Using λ to make forecasting
predictions of a virus with increase infectivity could have suggested better ways to take
precautionary steps to reduce the transmission of the Omicron variant.

Below are some applications that benefit from finding the threshold of arbitrary static
networks.

1. Public Health Interventions: Understanding λ can guide public health interven-
tions. For instance, if λ is high, indicating strong inter-node connectivity, targeted
vaccination campaigns could focus on “super-spreader” nodes to effectively reduce λ
and thereby the potential for an outbreak.

2. Network Optimization: In computer networks or social networks, λ can be used
to identify key nodes that, if removed or secured, could significantly reduce the risk
of network failure or information spread.

3. Financial Systems: In financial networks, understanding λ could help in identifying
the most interconnected banks or institutions. Targeted regulations could then be
applied to these entities to prevent systemic risks.

4. Emergency Preparedness: λ can be used to model the spread of wildfires, floods,
or other natural disasters across a network of affected regions. Resources could then
be optimally allocated to the most connected nodes to mitigate damage.

Understanding λ as a threshold has real-world implication. For example, removing nodes
from a given graph with greater connectivity will decrease the size of λ. In a real-world
example, we could vaccinate specific individuals (nodes) that have the highest connectivity
to help reduce the the size of λ so that the number of future infections drops beneath
the effective strength (s) threshold. Additionally, λ has implications for ’what-if’ scenarios
(briefly mentioned in 1.1 above) as it can be used to forecast future epidemics if a virus
becomes more infections/virulent. A very good and relatable real-world example of this is
the current COVID epidemic. In October of 2021, the Delta variant was still the dominant
strain causing infections in the USA. By mid-January 2022, the Omicron strain swept
through the US generating the greatest number of infections within a short period of time
at an alarmingly fast rate.
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4 Non-Linear Dynamic Systems (NLDS)

Non-Linear Dynamic Systems (NLDS) are mathematical models that describe how the state
of a complex system evolves over time in a non-linear manner. In the context of contagion
spread through a network, NLDS can be employed to capture the intricate interactions and
probabilistic states of each node in the network.

• Graph: Represents the network where each node is an entity that can be affected by
the contagion. Edges between nodes indicate some form of interaction or connectivity
that can facilitate the spread of the contagion.

• Probability Vectors P⃗t: These are time-stepped vectors that store the probabilistic
“state” of each node with respect to the contagion at a given time t. The size of each
probability vector is mN × 1, where N is the number of nodes and m is the number
of possible states a node can be in (e.g., susceptible, infected, recovered in an SIR
model).

• Function G(P⃗t): This is the non-linear function that defines how the probability vec-
tors P⃗t change over time. It models the transition between each time-step, effectively
capturing the dynamics of how the contagion propagates through the network.

4.1 SIR Example

In the case of an SIR VPM, the dimensions of each P⃗t vector would be 3N × 1 because
an SIR model has three epidemiological states: Susceptible, Infected, and Recovered. The
NLDS G(P⃗t) would then model how these states transition over time, taking into account
the non-linear interactions between nodes.

Think of the entire process as a stop-motion animation. Each frame (P⃗t) represents the
state of the system at a particular time. The transition between frames is orchestrated by
the non-linear function G, which dictates how each node’s state evolves as the contagion
spreads.

By using NLDS in this manner, one can capture the complex, non-linear interactions
that occur in real-world systems, making it a powerful tool for understanding and predicting
the dynamics of contagion spread through networks.

For example in, Figure 7, you can see that each probability vector has a size of mN × 1
where N is the number of nodes in the graph and m is the number of states a node can be
in with respect to the contagion. This allows us to keep track of how likely each node is in
a particular contagion state at a particular time.

We can then use a NLDS G(P⃗t) to model how those probabilities change over time as
the contagion propagates through the system. This process is kind of like a stop motion
animation where each P⃗t is an image and the transition between each image time-step is
defined by the non linear function ‘G‘.

For example if we wanted to simulate a SIR VPM as an aformementioned NLDS, the
dimensions of each P⃗t vector would be 3N×1 as an SIR model has 3 epidemiological states.

P⃗t+1 = G(P⃗t)

where

G : RmN → RmN

6



Figure 7: At each point in time in the simulation there is an mN × 1 probability vector
P⃗t representing how likely each of the N nodes are in any one of the m (in this case 3)
contagion states. [3]

is defined as the following system of equations:

PS,i,t+1 = PS,i,tζi,t(I)

PI,i,t+1 = PS,i,t(1− ζi,t(I)) + (1− δ)PI,i,t

PR,i,t+1 = PI,i,t + PR,i,t

Where ζi,t is the probability that the node i is not attacked by any of its infections
neighbors. [5]

5 Analyzing Dynamics with Multiple Contagions

5.1 Synchronization

Synchronization is a special case where the long term behavior of a graph enters a periodic
state. This typically happens when a SIRS disease periodically cascades through a highly
connected parts of the system leading to a wave in infections and then slowly burns through
more sparsely connected parts of the system to form a trough before burning through the
highly connected parts of the system once all the recovered nodes have become susceptible
again. Examples of this in the real world include measles cases in the UK as seen in Figure 8.
[2]

Figure 8: Case counts for measles across multiple cities in the UK. [2]

5.2 Multiple Competing Viruses

In general, when multiple viruses compete the strongest virus usually dominates. Where
strength is measured by communicability and positioning. E.g. a highly transmissible on an
isolated island is not going to dominate a less transmissible virus that starts out in a highly
connected place like New York City. In addition, viruses that are too weak to propagate in
the environment typically die out while mediocre propagators tend to go endemic.
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5.2.1 Strong vs Weak

For example in the Strong vs Weak case in Figure 9a we can easily see from the Time-Plot
that the Infection count of the stronger virus 1 will usually dominate the weaker virus 2
over time.

Then in the corresponding phase-plot in figure 9b we can see that there are two fixed
points fp1 and fp2. Since virus 2 is weak, there is no stability fixed point for virus 2 as at
any population it’s case count will drop to zero. There is a semi unstable fix point threshold
at fp1, where if there is any minor positive perturbation in the case count for virus 1 the
graph will inexorably go to fp2 where the stronger virus 1 has dominated the case count.
However as long as the case count for virus 1 remains zero, any amount of the weaker virus
two cases will go to zero over time.

In addition the phase plot has a line representing the path followed by the time-plot in
figure 9a

(a) Over time, the stronger Virus 1 dominates
the weaker Virus 2 in terms of case counts.
[4]

(b) In most cases, the simulation reaches the
stable fp2 where the stronger virus 1 prevails,
except for the unstable fixed point fp1.” [4]

Figure 9: Strong vs Weak Virus

5.2.2 Weak vs Weak

In the case of two weak virus, the case counts for both will drop to zero over time no matter
the initial starting point. An example of this can be seen in figure 10a

The fact that this drop to (0, 0) will happen for any initial case count for the weak
viruses 1 and 2 is highlighted in figure 10b where all the trajectory arrows point to the
stable fixed point fp1 at (0, 0).
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(a) Over time, both weak viruses die out. [4] (b) The trajectory arrows for both weak
viruses all end up in the fixed point fp1[4]

Figure 10: Weak vs Weak Virus

5.2.3 Strong vs Strong

Finally in the Strong vs Strong case, the stronger of the two viruses typically wins long
term as seen in figure 11a.

However there are certain unstable fixed points where the less strong virus will win out
(e.g. if the less strong virus is the only one introduced to the environment). Otherwise as
evidenced by the trajectory arrows in 11b, we tend to end up in the stable fixed point (fp2)
where the stronger virus dominates.

(a) When two strong viruses compete the
stronger one or the one in the better position
will eventually win out. [4]

(b) The trajectory arrows typically converge
to fp2, where the stronger virus 1 dominates.
Exceptions include fp1 and the semi-stable
fixed point fp3. fp3 acts as a stable sink when
virus 1’s case count is zero, and virus 2 has a
non-zero positive count. [4]

Figure 11: Strong vs Strong Virus

5.2.4 Cooperation and mutual immunity

In addition to competing, viruses can also coexist in the same host at the same time. When
this happens we often see examples of cooperation, partial mutual immunity, and full mutual
immunity. For example in figure 12, we are using a modified flu-like SIIIS model to model
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browser adoption where a user can install either Chrome, Firefox, both browsers, or neither
browsers. As seen in figure figure 12 users have some probability β1 and β2 of adopting
Chrome or Firefox respectively. Once they have adopted either one of the browsers they
have an ϵβ2 and ϵβ1 chance of adopting the other browser as well. [3]

This ϵ value is called the ”Interaction Factor” and is used to model how the browser
”contagions” affect each other’s adoption rate once they have been established. If the
adoption of one browser fully excludes the adoption of the other, then ϵ is zero and this is
case of ”Full Mutual Immunity”. However, if the adoption of one browser simply reduces
the probability of adoption of the other, then ϵ is less than 1 (but greater than zero)
and this is case of ”Partial Mutual Immunity”. Lastly if the adoption of one browser
increases the probability of adopting the other, then ϵ is greater than one and this is case
of ”Cooperation”. [1]

Figure 12: A modified SIIIS model for Web Browser adoption used to illustrate cooperation
and mutual immunity. [3]
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