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Flu in Our Society
• Every year

– Millions get infected

– Hundreds of thousands get hospitalized

– Thousands die

• Surveillance and forecasting methods are key
– Planning

– Designing countermeasures

• Only way to directly surveillance flu is through a virological test
– Costly, and very few testing stations

• Instead, we use Influenza like illness (ILI) reported by hospitals
– Symptomatic data
– ILI = fever (temperature of 100°F [37.8°C] or greater) and a cough 

and/or a sore throat without a KNOWN cause other than influenza.
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Flu Surveillance Systems
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• What is weighted influenza like illness 
(wILI)?

– Department of Health and Human Services (HHS) 

divides the country into 10 regions.

• Each region has a separate wILI incidence 
count, which is a weighted average

• 1 national region depicting overall wILI trend

• Effect of COVID: contamination of COVID in 
the flu due to symptomatic similarities

• March 2020: Region 2, 9, 10 initially 
emerged as COVID-19 hot-spots



A Novel Forecasting Setting

• Symptomatic similarities 
between these two illnesses 
and change in patient's 
behavior affects our current 
surveillance systems.

• wILI counts may be affected 
by
– COVID “contamination”
– Shift in healthcare seeking 

behavior during the pandemic

• This new scenario lead us a 
novel forecasting problem: 
COVID-ILI forecasting
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How Forecasting COVID-ILI 
is Useful?

• Forecasts the actual burden to hospitals
– Helpful for resource allocation and healthcare worker
deployment

• Can also be used to help with indirect COVID 
surveillance (Castrofino et al. 2020; Boëlle et al. 
2020)
– Especially useful at the early stages of the 

pandemic, when there were no well-established 
surveillance mechanisms for COVID

• Disambiguate trends between historical strains 
and new emerging strains during a flu season
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Challenges

• Historical data alone 
is inadequate to represen
t the current scenario

• Traditional ILI models are 
unable to adapt

• We propose to:
– Use patterns from 

historical ILI

– Leverage COVID-related 
signals (limited in size)
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Historical ILI 
Forecasting 
Models
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COVID-ILI Forecasting
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• Given
– Historical wILI seasons
– Partially observed COVID-

ILI incidence 
curve till 
week t for each region r.

– A set of COVID-related 
features observed till 
week t for all regions.

• Predict
– Future incidence for next 

four observations          for 
each region r.
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Technical Challenges
• Covid related data is very sparse

• Historical wILI data is rich but 
does not represent any of the 
effects of COVID

• How to exploit spatial correlation 
in exogeneous signals?

• How to leverage both the rich 
historical wILI data and highly 
informative sparse features for 
COVID-ILI forecasting?

• Historical wILI and COVID-related 
signals are asynchronous
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Exogenous data

wILI (Current and 
Past Seasons)

Rodríguez, et al., 2020



Outline

• Motivation

• Problem Formulation

• Approach

• Results and discussion

• Conclusion and future work

Rodríguez, et al., 2020 11



Covid-Augmented ILI Forecasting 
Network (CALI-Net)

• Steer an existing historical ILI model (EpiDeep, KDD 2019) 
with new COVID-related signals

• Goal: enable structured knowledge transfer from our 
historical ILI model to a spatio-temporal COVID-lLI model

• We use heterogenous transfer learning and knowledge 
distillation losses

12

High-level 
abstraction
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COVID model



Exploiting Learned Representations 
from Historical wILI

• We propose to address this problem as a heterogeneous transfer learning 
(HTL) problem, we adapt the HTL framework of Moon and Carbonell, 2017

• Knowledge extracted from historical wILI and from COVID-related signals 
are projected to a shared latent space

• Use of denoising autoencoder to improve representations
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COVID-Augmented Exogenous 
Model (CAEM)

- Global model with joint modeling of data from 
all regions (10 HHS regions + National)

- Region specific embeddings (one-hot encoding + 
autoencoder)

- Laplacian regularization exploiting regional inter-
dependencies

- Recurrent architecture to model temporal evolution
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Attentive Knowledge Distillation 
(KD) Losses
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Teacher (Epideep) 

prediction

Student 

(CAEM) prediction

• To better structure the knowledge transfer, we propose to 
incorporate KD losses; they encourage positive transfer between 
the COVID model (CAEM) and the historical model (EpiDeep)

• Attention in the KD losses (Saputra et al. 2019) automatically 
prevent negative transfer

Calculating Attention in KD Loss

Teacher (Epideep) 

intermediate 
representation

Student (CAEM)

intermediate representation

Imitation loss Hint loss
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Experiment Setup

• We divide the forecasting period in two:

– T1: period of non-seasonal rise of wILI due to 
contamination by COVID-19 (EWs 9-11)

– T2: period when COVID-ILI trend is declining more 
in tune with the wILI pattern (EWs 12-15)

• Metric: RMSE

• Results presented for next incidence 
prediction, more in appendix
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Datasets
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• wILI data collected by CDC and publicly available
• COVID-related signals collected from multiple public 

sources



Baselines
Recent historical wILI models (Reich et al. 2019):
- Delta-Density

- Kernel conditional density estimation, a non-parametric 
statistical methodology that is a distribution-based variation on 
nearest-neighbors regression

- Empirical Bayes
- Model past seasons’ epidemic curves as smoothed versions plus 

noise.
- Construct prior for the current season’s epidemic curve by 

considering sets of transformations of past seasons’curves
- SARIMA

- Autoregressive Integrated Moving Average model with 
seasonality

Also, HIST, a persistence baseline based on weekly average of 
the historical seasons
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Experimental Questions

Transfer Learning
• Q1. Is CALI-NET able to achieve successful positive transfer to 

model the contamination of wILI values?
• Q2. Does CALI-NET prevent negative transfer by automatically 

recognizing when wILI and COVID-19 trends deviate? 
Forecasting Performance
• Q3. Does CALI-NET’s emphasis on transfer learning sacrifice overall 

performance with respect to state-of-the-art methods?
Ablation Studies
• Q4. How does each facet of CALI-NET affect COVID-ILI forecasting 

performance? 
• Q5. What data signals are most relevant to COVID-ILI forecasting?
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Transfer Learning Results 
(compare vs historical ILI model)
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Leverage positive transfer Prevent negative transfer

Forecasting performance during period of 
increasing COVID-ILI leading to unseasonal peak

Forecasting performance during period of declining 
COVID-ILI trend i.e., return to traditional dynamics.

Lower 

is better



Overall Performance: Emphasis in 
Adaptation Doesn't Compromise It
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• Overall 
model performance across
period T1 + T2

• CALI-NET outperforms 
other models in 5 out of 
11 regions, on par with 
DeltaDensity, a SOTA 
model

• CALI-NET yields 
to competitive 
performance across the 
entire course T1 + T2

Histogram of Number of 
Regions where each 

Model is the Best 
Performing One



Focusing on Period T1 (uptake)
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CALI-Net outperforms all models in 9 out of 11 regions for 
positive transfer phase T1 where COVID-19 contamination 

of wILI is the greatest.

Performance Characterization in Period T1



Model Ablation
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Effect of Knowledge Distillation
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KD helps improve predictions

KD is not helping 

Knowledge distillation (KD) is helpful in most of the 
regions/weeks, especially in short term forecasting 
and in T2 (i.e., helping to prevent negative transfer)

Ratio of RMSE of CALI-NET with vs without 

knowledge distillation losses



Data Ablation
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DS1: Line list data

DS2: Testing data

DS3: Crowdsourced symptomatic data 

DS4: Social media

Line list data is the most helpful, followed by crowdsourced 
and testing. Social media is the least helpful 
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Conclusions and Future Work

- We proposed CALI-Net, a novel framework for principled 
transfer of relevant knowledge from an existing 
forecasting model (based on rich historical data) to a one 
relying on relevant but limited recent exogenous signals 

- Characterized CALI-Net performance at different stages of 
the wILI season and showcase effectiveness of its transfer 
learning capabilities

- Compared CALI-Net to SOTA and showcase comparable 
(and in many cases superior) performance of CALI-Net

- Moving forward, we wish to:
- Automatically differentiate outbreaks of COVID and flu
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