

DeepCOVID: An Operational Deep Learningdriven Framework for Explainable Real-time COVID-19 Forecasting

Authors:

Alexander Rodríguez¹, Anika Tabassum^{1,2}, Jiaming Cui¹, Jiajia Xie¹, Javen Ho¹, Pulak Agarwal¹, Bijaya Adhikari³, B. Aditya Prakash¹

¹Georgia Institute of Technology ²Virginia Tech

³University of Iowa

THE UNIVERSITY

Georgia

Outline

- Motivation
- Approach
 - Data module
 - Prediction module
 - Explainability module
- Results and discussion
- Conclusion and future work

Impact of a Pandemic in Modern Society

Real-time COVID-19 Forecasting

Possible near future:

- **→** Goes down
- Stays still
- ✓ Goes up

Depends on:

- Interventions in place
- Current number of infections
- Contact patterns
- Exposure to disease
- Etc

Real-time COVID-19 Forecasting

Possible near future:

- **→** Goes down
- Stays still
- ✓ Goes up

Depends on:

- Interventions in place
- Current number of infections
- Contact patterns
- Exposure to disease
- Etc

Why Forecasting?

An outlook to the future allow communities to

- Allocate resources/budget
 - Ventilators, enable more ICU beds
- Inform public policy
 - E.g., mandate shelter in place?
- Improve preparedness

• ...

Data-driven Models for COVID-19 Forecasting

- Most methods in COVID Forecast Hub were mechanistic or agent-based models.
- Our approach's goal: explore performance and utility of purely data-driven models in short-term forecasting
 - Give a different perspective
- Pros:
 - See what the data says with minimal assumptions
 - Update very quickly
 - Ingest multiple signals
 - Techniques for robustness
- Challenges: interpretability; principled uncertainty estimation; data quality issues; nontrivial for what-if forecasting
- Past success in forecasting other infectious diseases

Our Participation in CDC Forecasting Initiatives

Target 1: Weighted influenza like illness (wILI) count per week

Target 2: Weekly reported Covid Mortality

Target 3: Daily Covid-induced Hospitalizations

Since April End 2020

Outline

- Motivation
- Approach
 - Data module
 - Prediction module
 - Explainability module
- Results and discussion
- Conclusion and future work

Our Operational Framework

Rationale of the Framework

- Separate noisy data from the learning process
- Explainability is a challenge in data-driven models
- Understand and connect forecasts with epidemiological reasons
- Feedback to improve performance

Why Deep Learning?

- Flexible, scalable, efficient technology
- Excellent choice to model non-linearities
- Able to incorporate different knowledge representations
- Very active research area

Outline

- Motivation
- Approach
 - Data module
 - Prediction module
 - Explainability module
- Results and discussion
- Conclusion and future work

Data Challenges: Don't Underestimate!

- (C1) Multiple data sources and formats
 - Format varies over time
- (C2) Select signals with epidemiological significance
- (C3) Temporal misalignment
 - Delays, pause in reporting, differ in granularity
- (C4) Spatial misalignment
 - Differ in granularity: county vs state vs national
- (C5) Data quality and missing data
 - Noisy and unreliable for some states
 - New hospitalizations (target) is not reported by all states

Data Sources

- Line-list based
- Testing
- Crowdsourced
- Mobility
- Exposure
- Social Media surveys

Data Signals

Details in
Paper &
Appendix

Type/Rationale	Signals
(DS1) <i>Line list</i> : Traditional surveillance for tracking patients and symptoms	1. Confirmed cases; 2. UCI beds currently occupied; 3. People on ventilation; 4. Recovered; 5. Hospitalization rate (COVID-Net); 6. ILI% ER visits; 7. CLI% ER visits; 8. Excess Deaths;
(DS2) <i>Testing</i> : Capture changing screening artifacts	• • • • • • • • • • • • • • • • • • •
(DS3) Crowdsourced: Symptomatic surveillance	13. Digital thermometer readings provide ILI%;
(DS4) <i>Mobility</i> : Evidence of changing contact patterns	14. Retail and recreation; 15. Grocery and pharmacy; 16. Parks; 17. Transit stations; 18. Residential; 19. Workplaces; 20. Overall-region-based
(DS5) <i>Exposure</i> : Measure social contacts	21-22. Device exposures (normal & adjusted);
(DS6) <i>Social Surveys</i> : Measure symptomatic burden	23. CLI%; 24. ILI%

Outline

- Motivation
- Approach
 - Data module
 - Prediction module
 - Explainability module
- Results and discussion
- Conclusion and future work

No historical data!

Problem Formulation

Given

- Partially observed mortality and hospitalization incidence curve till day t.
- Exogenous data sources

Predict

- Future weekly mortality incidence and cumulative for next four weeks
- Future daily hospitalization incidence for next four weeks

If Historical Data Exists...

- This is the scenario for Covid-ILI
- Steer an existing historical ILI model with new Covid-related signals
- Able to train large deep learning models

High-level abstraction

Accepted in AAAI-21 main track

Current Situation: No historical data

- Unable to steer an existing model
- Use only Covid-related data sources.
- Covid data signals observed only since March.
- Observed data sparse, noisy and heterogeneous.

Prediction Module Challenges

- (C6) Data sparsity due to the novel and dynamic nature of the disease
- NN with small number of params to avoid overfitting
 Debugt point and probabilistic foregoesting
- (C7) Robust point and probabilistic forecasting
 - Robustness to noise via batch normalization
 - Multiple initializations of optimization
 - Principled uncertainty estimation via bootstrapping
- (C8) Temporal consistency between consecutive forecasts
 - Due to sparsity, we cannot train recurrent net
 - We use self-regressive forecasting

Schematic of Prediction Module

Outline

- Motivation
- Approach
 - Data module
 - Prediction module
 - Explainability module
- Results and discussion
- Conclusion and future work

Explainability Module

- Why needed?
 - Understand the impact of various signals
 - Drive epidemiological observations
 - To improve our own predictions
- Data ablation: systematic removal of signals
- Evaluate signals that impact the most to our predictions and make sense of them
- Insights in real-time and in retrospective

Explainability Module Challenges

(C9) Real-time insights of forecasts for decisionmaking and communication

- Data ablation for current week predictions
- Use an interface to visualize signals and their predictive contribution

(C10) Retrospectively understand signal strengths

- This allows continual improvement of forecasts
- We use data ablation for past predictions

Interface + Data Ablation

Retrospectice Analysis

Understand contribution to **past performance**

Real-time Analysis

Understand signals driving current predictions

Outline

- Motivation
- Approach
 - Data module
 - Prediction module
 - Explainability module
- Results and discussion
- Conclusion and future work

Setup

- All results are based on the real-time forecasts submitted during three months (June 8 to September 7 2020)
- Metrics: MAPE for point estimate performance; interval score (Bracher et al. 2020) for probabilistic interval performance

Obs. 1: Anticipate Trend Changes

CA Incidence Mortality

We anticipated trend change 3 weeks early

CA Incidence Mortality

Accurately predict ramp up +
Adapt uncertainty

Obs. 2: Capture Finer Grained Reporting Patterns

FL Incidence Hospitalizations

Micro-patterns:
P1. Weekend drop
P2. Rise on Monday,
stable in weekdays

Obs. 3: Excels in US National Short-term Forecasting

Lower is better

Point estimate performance

Probabilistic interval performance

US National point estimate performance is better that the COVIDHub ensemble and close in probabilistic interval performance

Öbs. 4: Longer-term Performance is not Compromised

States suffer more of data quality issues and that affects our performance, but overall we are competitive

Obs. 5: Explainability of Predictions

- Signals contributing to US second peak prediction:
 - Mobility
 - Testing
- Sanity check to have confidence in predictions

Outline

- Motivation
- Approach
 - Data module
 - Prediction module
 - Explainability module
- Results and discussion
- Conclusion and future work

Future Steps

- Model non-pharmaceutical interventions explicitly
- Look at smaller geographical granularities
- Differentiate outbreaks of COVID and symptomatically similar diseases (e.g., flu)
- Handle backfill revisions

Lessons Being Learnt: Data Revisions

- Data revisions error has potential to mislead predictions.
- Evaluations in short term are not always reliable
 - Validation based on recent data may not always work

Takeaways

- DeepCOVID, a purely data-driven approach
 - Complementary perspective to the ensemble
 - Competitive performance, excels in short-term forecasting
- Allows some epidemiological insights
- Capable of ingesting a large amount of signals
- Easy to adapt to target and time resolution
- Active research area with open questions

Thanks!

Pre-print:

https://www.medrxiv.org/content/10.1101/2020.09.28.20203109v2

Resources:

https://deepcovid.github.io/

Contact:

Alexander Rodríguez arodriguezc@gatech.edu