
Authors:

Alexander Rodríguez1, Anika Tabassum1,2, Jiaming Cui1, Jiajia Xie1, Javen Ho1, Pulak Agarwal1, Bijaya Adhikari3, B. Aditya Prakash1

1Georgia Institute of Technology

2Virginia Tech

3University of Iowa

Conference on Innovative Applications of Artificial Intelligence (IAAI-21)
February 4-6, 2021
Outline

- Motivation
- Approach
 - Data module
 - Prediction module
 - Explainability module
- Results and discussion
- Conclusion and future work
Impact of a Pandemic in Modern Society

Many U.S. Hospitals Are Running Critically Short Of ICU Beds
ICU occupancy rates at or above 100% in U.S. hospital service areas with high populations*

COVID-19 Causes Unprecedented Job Crisis
Weekly initial jobless claims in the United States (seasonally adjusted)

* Based on seven-day averages for the week ending Thursday, Dec. 3
Source: Department of Health and Human Services via The New York Times

Source: U.S. Department of Labor
Real-time COVID-19 Forecasting

Possible near future:

- Goes down
- Stays still
- Goes up

Depends on:

- Interventions in place
- Current number of infections
- Contact patterns
- Exposure to disease
- Etc

Oklahoma Incidence Mortality

Rodríguez, et al., 2020
Possible near future:
- Goes down
- Stays still
- Goes up

Depends on:
- Interventions in place
- Current number of infections
- Contact patterns
- Exposure to disease
- Etc
Why Forecasting?

An outlook to the future allow communities to
• Allocate resources/budget
 – Ventilators, enable more ICU beds
• Inform public policy
 – E.g., mandate shelter in place?
• Improve preparedness
• ...

Rodríguez, et al., 2020
Data-driven Models for COVID-19 Forecasting

• Most methods in COVID Forecast Hub were mechanistic or agent-based models.

• **Our approach's goal**: explore performance and utility of purely data-driven models in short-term forecasting
 – Give a different perspective

• Pros:
 – See what the data says with minimal assumptions
 – Update very quickly
 – Ingest multiple signals
 – Techniques for robustness

• Challenges: interpretability; principled uncertainty estimation; data quality issues; nontrivial for what-if forecasting

• Past success in forecasting other infectious diseases

Rodríguez, et al., 2020
Our Participation in CDC Forecasting Initiatives

Target 1: Weighted influenza like illness (wILI) count per week

Target 2: Weekly reported Covid Mortality

Target 3: Daily Covid-induced Hospitalizations

Since April End 2020

Rodríguez, et al., 2020
Outline

• Motivation

• Approach
 – Data module
 – Prediction module
 – Explainabilty module

• Results and discussion

• Conclusion and future work
Our Operational Framework

- Alignment of delayed signals
- Normalize temporal granularities
- Spatial aggregation and de-aggregation
- Imputation

Rodríguez, et al., 2020
Rationale of the Framework

- Separate noisy data from the learning process
- Explainability is a challenge in data-driven models
- Understand and connect forecasts with epidemiological reasons
- Feedback to improve performance
Why Deep Learning?

• Flexible, scalable, efficient technology
• Excellent choice to model non-linearities
• Able to incorporate different knowledge representations
• Very active research area
Outline

• Motivation
• Approach
 – Data module
 – Prediction module
 – Explainability module
• Results and discussion
• Conclusion and future work

Rodríguez, et al., 2020
Data Challenges: Don't Underestimate!

(C1) Multiple data sources and formats
 – Format varies over time
(C2) Select signals with epidemiological significance
(C3) Temporal misalignment
 – Delays, pause in reporting, differ in granularity
(C4) Spatial misalignment
 – Differ in granularity: county vs state vs national
(C5) Data quality and missing data
 – Noisy and unreliable for some states
 – New hospitalizations (target) is not reported by all states
Data Sources

• Line-list based
• Testing
• Crowdsourced
• Mobility
• Exposure
• Social Media surveys
Data Signals

<table>
<thead>
<tr>
<th>Type/Rationale</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DS1) Line list: Traditional surveillance for tracking patients and symptoms</td>
<td>1. Confirmed cases; 2. UCI beds currently occupied; 3. People on ventilation; 4. Recovered; 5. Hospitalization rate (COVID-Net); 6. ILI% ER visits; 7. CLI% ER visits; 8. Excess Deaths;</td>
</tr>
<tr>
<td>(DS3) Crowdsourced: Symptomatic surveillance</td>
<td>13. Digital thermometer readings provide ILI%;</td>
</tr>
<tr>
<td>(DS5) Exposure: Measure social contacts</td>
<td>21-22. Device exposures (normal & adjusted);</td>
</tr>
<tr>
<td>(DS6) Social Surveys: Measure symptomatic burden</td>
<td>23. CLI%; 24. ILI%</td>
</tr>
</tbody>
</table>
Outline

• Motivation
• Approach
 – Data module
 – Prediction module
 – Explainability module
• Results and discussion
• Conclusion and future work
No historical data!

Problem Formulation

• **Given**
 – Partially observed mortality and hospitalization incidence curve till day t.
 – Exogenous data sources

• **Predict**
 – Future *weekly* mortality incidence and cumulative for next four weeks
 – Future *daily* hospitalization incidence for next four weeks

Rodríguez, et al., 2020
If Historical Data Exists…

• This is the scenario for Covid-ILI
• Steer an existing historical ILI model with new Covid-related signals
• Able to train large deep learning models

Historical ILI model

High-level abstraction

Accepted in AAAI-21 main track
Current Situation: No historical data

• Unable to steer an existing model
• Use only Covid-related data sources.
• Covid data signals observed only since March.
• Observed data sparse, noisy and heterogeneous.
Prediction Module Challenges

(C6) Data sparsity due to the novel and dynamic nature of the disease
 – NN with small number of params to avoid overfitting

(C7) Robust point and probabilistic forecasting
 – Robustness to noise via batch normalization
 – Multiple initializations of optimization
 – Principled uncertainty estimation via bootstrapping

(C8) Temporal consistency between consecutive forecasts
 – Due to sparsity, we cannot train recurrent net
 – We use self-regressive forecasting
Schematic of Prediction Module

Input Data → Bootstrapping → Individual Neural Models → Probabilistic Predictions

Self-regressive forecasting

Rodríguez, et al., 2020
Outline

• Motivation
• Approach
 – Data module
 – Prediction module
 – Explainability module
• Results and discussion
• Conclusion and future work
Explainability Module

• Why needed?
 – Understand the impact of various signals
 – Drive epidemiological observations
 – To improve our own predictions

• Data ablation: systematic removal of signals
• Evaluate signals that impact the most to our predictions and make sense of them
• Insights in real-time and in retrospective
Explainability Module Challenges

(C9) Real-time insights of forecasts for decision-making and communication
 – Data ablation for current week predictions
 – Use an interface to visualize signals and their predictive contribution

(C10) Retrospectively understand signal strengths
 – This allows continual improvement of forecasts
 – We use data ablation for past predictions
Interface + Data Ablation

Retrospective Analysis

Real-time Analysis

Understand contribution to past performance

Understand signals driving current predictions

Rodríguez, et al., 2020
Outline

• Motivation

• Approach
 – Data module
 – Prediction module
 – Explainability module

• Results and discussion

• Conclusion and future work
Setup

• All results are based on the real-time forecasts submitted during three months (June 8 to September 7 2020)

• Metrics: MAPE for point estimate performance; interval score (Bracher et al. 2020) for probabilistic interval performance
Obs. 1: Anticipate Trend Changes

We anticipated trend change **3 weeks early**

Accurately predict ramp up + Adapt uncertainty

Rodriguez, et al., 2020
Obs. 2: Capture Finer Grained Reporting Patterns

Micro-patterns:
P1. Weekend drop
P2. Rise on Monday, stable in weekdays
Obs. 3: Excels in US National Short-term Forecasting

US National point estimate performance is better that the COVIDHub ensemble and close in probabilistic interval performance

Rodríguez, et al., 2020
Obs. 4: Longer-term Performance is not Compromised

States suffer more of data quality issues and that affects our performance, but overall we are competitive

Rodríguez, et al., 2020
Obs. 5: Explainability of Predictions

- Signals contributing to US second peak prediction:
 - Mobility
 - Testing

- Sanity check to have confidence in predictions
Outline

• Motivation
• Approach
 – Data module
 – Prediction module
 – Explainability module
• Results and discussion
• Conclusion and future work
Future Steps

• Model non-pharmaceutical interventions explicitly
• Look at smaller geographical granularities
• Differentiate outbreaks of COVID and symptomatically similar diseases (e.g., flu)
• Handle backfill revisions
Lessons Being Learnt: Data Revisions

- Data revisions error has potential to mislead predictions.
- Evaluations in short term are not always reliable
 - Validation based on recent data may not always work
Takeaways

• DeepCOVID, a purely data-driven approach
 – Complementary perspective to the ensemble
 – Competitive performance, excels in short-term forecasting

• Allows some epidemiological insights

• Capable of ingesting a large amount of signals

• Easy to adapt to target and time resolution

• Active research area with open questions

Rodriguez, et al., 2020
Thanks!

Pre-print:
https://www.medrxiv.org/content/10.1101/2020.09.28.20203109v2

Resources:
https://deepcovid.github.io/

Contact:
Alexander Rodríguez
arodriguezc@gatech.edu