

Adapting to Dynamic Registration Errors Using Level of Error (LOE) Filtering

Blair MacIntyre and Enylton Machado Coelho

Graphics, Visualization and Usability Center
College of Computing

Georgia Institute of Technology
Atlanta, GA, USA

{blair, machado}@cc.gatech.edu

In the

International Symposium on Augmented Reality (ISAR 2000),

 Oct 5-6, 2000, Munich, Germany.
Abstract

In this poster we describe our initial work on generating
Augmented Reality (AR) displays in the face of dynamically
changing errors in the pose (position and orientation) of
both the user and objects in the world. Dealing with this
problem is particularly important in mobile AR
environments, where the tracking accuracy of the user’s
head can change frequently and dramatically as she moves
between areas with radically different tracking systems,
such as in and out of buildings. We introduce the notion of
“level of error” filtering, analogous to “level of detail”
culling in 3D graphics systems, to help programmers build
interfaces that automatically adapt to changing
registration errors.

Keywords: augmented reality, human-computer
interaction, adaptive interfaces, mobile computing,
wearable computing.

1. Introduction

Augmented Reality (AR) systems must be able to register
the computer generated visual and auditory media with the
real world. For example, a virtual arrow created to point at
a resistor on a circuit board must appear to point at the
correct resistor, not some other component near it.
Registration requires accurate tracking: the system must
know where the objects (i.e. the resistor) are with respect to
the user and her displays in order to accurately register the
graphics or sound with the appropriate objects in the world.
Unfortunately, even small tracking errors will result in
registration errors. It is our belief that the tracking problem
will not be solved in the near future, especially in the
context of wearable AR systems that must work
predictably and reliably as mobile users move through
unfamiliar, uncontrolled and even dangerous environments.
Therefore, we believe that AR systems should take these
errors into account rather than assume they will go away.
The goal of our research is to develop techniques for
creating AR displays that adapt their visual and auditory
augmentations to account for changes in pose errors.

In this poster, we introduce an approach to
automatically adapting to changing registration errors,

which we refer to as level of error (LOE) filtering. This
approach is similar to (and inspired by) level of detail
(LOD) culling used in 3D graphics systems: in real time,
the system computes a value that is used to select one of a
set of alternate representations of a virtual object, where
each representation corresponds to a range of the computed
value. In LOD culling, the value used is the distance
between the viewer and the objects, with the goal being to
allow less computationally expensive representations to be
used as the distance increases. In LOE filtering, the value is
the registration error, which is in turn a function of the
distance from the user to the object of the augmentation
and the errors in the pose data of the user and objects. The
goal of LOE filtering is to allow different representations
of an augmentation to be automatically used as the
registration error changes.

A long-term goal of this research is to develop high-
level programming toolkits for AR applications. In our
previous work, we focussed on support for rapid
prototyping of distributed AR applications, but provided no
explicit support for sophisticated display techniques [6, 8].
Like most other researchers, we encoded all the display
techniques in the applications themselves, making them
difficult to build on in subsequent systems, and difficult to
change. We are in the process of developing toolkits that
support sophisticated techniques for displaying, arranging
and filtering augmentations across a full range of AR
applications. LOE filtering provides the low level support
for responding to registration error changes in real-time,
and will be a key component of such toolkits.

2. Background and Related Work

Many technical problems must be solved before wearable
AR systems will become practical. One of the most
important is the tracking problem, which has received
significant attention from AR researchers (e.g., [1, 5]). The
tracking problem is so important because, for many
applications, the perceived quality of an AR display is a
direct function of how well the computer-generated
material is registered with the user's perception of the
world. The accuracy of the registration is in turn a function
of the accuracy of the position and orientation (or pose)

information used by the system to generate the
augmentations, including the pose of both the user and the
objects in the environment. For an analysis of the issues
related to registration error, see [4]. As mentioned in
Section 1, we believe that the tracking problem will not be
solved in the near future, especially in the context of
wearable AR systems that must work predictably and
reliably as mobile users move through unfamiliar,
uncontrolled and even dangerous environments.

In contrast to those researchers interested in the tracking
problem, most of the remaining AR researchers (including
ourselves) are interested in examining the application and
UI issues associated with AR. Because of the poor quality
of tracking technology, and the difficulty of building even
the most basic AR application prototypes [6], UI
researchers usually assume some amount of accuracy in the
tracking data and integrate these assumptions into their
application and interface designs. At one end of the
spectrum, many projects assume, implicitly or explicitly,
that the tracking problem will one day be solved and near-
perfect registration will be possible (e.g., [3, 11]). Others
have assumed lower quality tracking and built systems that
perform reasonably under those poor conditions. Many
mobile systems fall into this category, typically because of
the low positional accuracy available from differential GPS
(i.e., usually about 2 meters) and wide-area indoor tracking
systems (such as Active Badges) (e.g., [2, 9]).

In contrast to these systems, we believe that mobile AR
systems should be built assuming the tracking problem will
never be completely solved, and that different parts of the
world, and different objects within it, will exhibit different
tracking errors. Furthermore, we believe that the
magnitude of the tracking errors will change dynamically
as the user moves from location to location, so mobile AR
applications will need to continually adapt to these changes
[7].

2.1. Registration Error Ranges

It is important to remember that, for a pose measurement in
a real system, the actual error cannot be accurately
measured; if the error was known, the pose measurement
could be corrected to eliminate it. Instead, for any given
pose measurement, we use the term error to refer to the
range of possible errors. An AR system will try to model
the range of possible errors that affect a pose measurement,
and use this model to determine the error range for that
measurement.

Typical tracking system manufacturers provide
specifications of the worst-case maximum translation and
orientation errors of their devices, which can be used as a
starting point for modelling the tracker’s error. In Figure 1,
we show the error volumes that correspond to possible end-
to-end errors in our prototype, both of which are much

larger than the manufacturer specifications for the tracker
we used.

In our initial work, we are assuming that all pose
measurements can have their error range modelled as an
angular orientation error and a linear translation error. We
also assume that the error values can change with each new
measurement. While this is a simplification, it captures the
gross behavior of measuring pose error, without getting
bogged down in the details of individual tracker behavior.
In our current experiments, we are modelling the errors by
using the simple, manufacturer specified worst-case error
of our trackers. However, some trackers, such as magnetic
or ultrasonic position sensors, exhibit non-uniform error
over their tracking space. We are assuming that, if such
error could be measured, a more robust model could be
built that would not violate any of this work.

More importantly, for some trackers the worst case error
and typical error are significantly different. For example, a
magnetic compass may have a typical worst-case error of a
fraction of a degree, but may exhibit significantly greater
error in the presence of strong magnetic fields [12]. A GPS
system may have a worst-case error of 100 meters, but a
typical error of less than half of that. Dealing with such
problems is a topic for future work, and will probably
require the integration of multiple sensors.

3. The LOE Filtering System

As discussed in Section 1, the solution we are pursuing is
to collect a variety of information (e.g. pose errors and
semantic information about the desired augmentations),

(a) 2˚, 1.2 cm (b) 2˚, 20 cm

Figure 1. Error volumes around a 3D point, with different
tracking error (each volume was rendered using a cloud of
green points, which has been outlined here in white for clarity).
The error volume is intended to be centered around one of the
buttons on our electronic whiteboard (near the bottom of the
sphere in (a)). The error values are much larger than the
manufacturer specification for our tracker (1/4˚, 6mm) because
the total end-to-end error in the system is larger than just the
tracker error. (a) corresponds to a realistic estimate of the
error in our prototype; the button lies within the volume, just on
the edge. (b) shows the volume if we had a less accurate
measurement of the location of the whiteboard.

and use this information to guide the display techniques for
each augmentation in an AR system.

Our first step toward a solution to this problem is the
notion of level of error filtering, analogous to the concept
of level of detail culling (LOD) used in 3D graphics
systems. LOD is based on the observation that, as an object
moves farther from the viewer, it takes up less pixels on the
screen, and therefore simpler models can be used to render
the object without changing its appearance. Systems that
use LOD automatically switch between the different
representations of an object based on the distance to the
object from the viewer.

LOE is based on the observation that, as an
augmentation moves with respect to the viewer, or as the
error ranges for the viewer or the object change, the
registration error of pixels on the augmentation may
change, which may require that the representation of the
augmentation change as well.

To test these ideas, we implemented LOE filtering
objects as an extension to Java3D [10]. These LOE objects
extend the Java3D LOD objects, and support dynamically
switching between any number of representations of an
augmentation based on the registration error. In this
implementation, the semantics of the augmentation are
implicit in the alternative representations implemented by
the programmer, and are not explicitly used by the system.

3.1. LOE Object Interface

When creating an LOE filtering object for an
augmentation, the programmer provides a set of N
representations (representationObjecti, i=1..N)
along with N-1 numbers (maxErrori, i=1..N-1)
representing the registration error boundaries. The system
arranges for representationObject1 to be used
when the registration error is less than maxError1,
representationObjectN to be used when the
registration error is greater than maxErrorN-1, and for
representationObjecti to be used when the
registration error falls between maxErrori-1 and
maxErrori.

Internally, the LOE objects maintain information on the
eye position of the viewer and the pose error characteristics
of the tracking system. Currently, we have one set of error
characteristics maintained, but eventually the programmer
will need to be able to specify if the target of the
augmentation is subject to any additional pose error.

The registration error is computed as an angular error
that combines the angular and translational errors of the
user’s viewpoint with those of the object being augmented.

3.2. Example: Locate an object

One of the most commonly used augmentations is pointing
at a location in space with a text label and arrow. In this
example, we created an locate augmentation that has three
different representations, as shown in Figure 2. In (a), the
whiteboard is outlined with a green box and a simple text
label is used to tell the user why the board is outlined.
Unfortunately, once the registration error approaches
approximately an inch in local whiteboard coordinates (or
1/60th of the width of the board), the green box may no
longer meaningfully outline the whiteboard. Figure 2(b)
shows the second representation of the augmentation,
which is similar to the first except that the rectangle is big
enough to contain the whiteboard as long as the error falls
within 10 inches in whiteboard coordinates (or 1/6 the
width of the whiteboard), and the text label is a bit more
detailed. Finally, if the registration error exceeds 1/6 the
width of the whiteboard, the third representation of the
augmentation is used; this version only contains a text label

(a) 0.5˚, 1.2 cm

(b) 2˚, 20cm

(c) 8˚, 60 cm

Figure 2. Three different augmentations to help the user locate
a todo list on the electronic whiteboard in our lab. In (a), an arrow
is pointing at a box highlighting the board, and is labelled with
text telling them to check the todo list. In (b), the arrow is pointing
to a box that encompasses that larger area the board should fall
in, and the text is more specific. Finally, in (c), the error is
sufficiently large that no meaningful spacial augmentation can be
used, so an event more detailed textual description guides the
user to the hardboard and the todo list on it.

that explains where the todo list is without pointing to the
real world.

In this example, the LOE object takes care of switching
between the three representations as the user moves or the
pose error ranges change.

4. Discussion and Future Work

In this poster, we have described out initial work on
automatically adapting to dynamically changing
registration errors, which we refer to as level of error
(LOE) filtering. This approach is similar to (and inspired
by) level of detail (LOD) culling used in 3D graphics
systems: in real time, the system computes a registration
error value that is used to select one of a set of alternate
representations for an augmentation. The goal of LOE
filtering is to allow different representations of an
augmentation to be automatically used as the registration
error changes, either because the user moves or because the
pose error range of the tracking system changes.

An interesting difference we have noticed between LOD
and LOE objects is the need to support some amount of
hysteresis in the function that chooses the representation to
display. In LOD objects, the system can switch between
representations as often as desired, including toggling back
and forth between two representations if the user is sitting
on a boundary. This works because the objects are typically
designed to be are indistinguishable at these boundary
points. In LOE objects, on the other hand, the alternate
representations may be very different, so the system should
not rapidly toggle between representations when a user is
on a boundary. Modifications to the choice function, such
as changing only if the boundary has been crossed by a
certain amount, would fix this problem.

A long-term goal of this research is to develop high-
level programming toolkits for AR applications. We are in
the process of developing toolkits that support
sophisticated techniques for displaying, arranging and
filtering augmentations across a full range of AR
applications. LOE filtering provides part of the low level
support for adapting to registration errors in real-time, and
will therefore be a key component of our toolkits.

5. Acknowledgments

The authors would like to acknowledge the members of the
Augmented Environments Lab and Future Computing
Environments Group at Georgia Tech for their influence on
this work. We would especially like to thank Rob Kooper
for his involvement, and his help with the support software.
This work was supported by Siemens via a GVU Industrial
Affiliate Grant, ONR under Grant N000140010361, and
equipment and software donations from Sun Microsystems
and Microsoft.

6. References

[1] Azuma, R. and Bishop, G. (1994) "Improving Static
and Dynamic Registration in an Optical See-through
HMD" In Computer Graphics Proc. ACM
SIGGRAPH ‘94, pp 197–204.

[2] Feiner, S., MacIntyre, B., Höllerer, T., and Webster,
A. (1997) "A Touring Machine: Prototyping 3D
mobile augmented reality systems for exploring the
urban environment" Personal Technologies,
1(4):208–217.

[3] Feiner, S., MacIntyre, B., and Seligmann, D. (1993)
"Knowledge-based augmented reality,"
Communications of the ACM, 36(7):52–63.

[4] Holloway, R. (1997) “Registration Error Analysis for
Augmented Reality”, Presence, 6,(4), Aug. 1997, pp.
413–432.

[5] Jacobs, M., Livingston, M. A., and State, A. (1997)
"Managing Latency in Complex Augmented Reality
Systems." In Proceedings of 1997 Symposium on
Interactive 3D Graphics, Providence, RI, April 27-30,
1997, pp. 49–54.

[6] MacIntyre, B. (1999). "Exploratory Programming of
Distributed Augmented Environments," Phd
Dissertation, Columbia University, Department of
Computer Science, 1999.

[7] MacIntyre, B. and Feiner, S. (1996) "Future
multimedia user interfaces," Multimedia Systems,
4(5):250–268.

[8] MacIntyre, B. and Feiner, S. (1998) "A Distributed 3D
Graphics Library." In Proc. ACM SIGGRAPH 98,
pages 361-370, July 19-24, 1998, Orlando, Florida.

[9] Mynatt, E. D., Back, M., Want, R. and Frederick, R.
(1997) "Audio Aura: Light-Weight Audio Augmented
Reality," In Proceedings of ACM UIST’97
Symposium on User Interface Software and
Technology, pp. 210-212.

[10] Sowizral, H., Rushforth, K., and Deering, M. (1998).
The Java 3D API Specification. Addison Wesley,
Reading, MA.

[11] Webster, A., Feiner, S., MacIntyre, B., Massie, B., and
Krueger, T. (1996) "Augmented reality in
architectural construction, inspection and renovation"
In Proc. ASCE Third Congress on Computing in Civil
Engineering, pages 913–919, Anaheim, CA.

[12] You, S., Neumann, S., and Azuma, R (1999).
"Orientation Tracking for Outdoor Augmented
Reality Registration." In IEEE Computer Graphics
and Applications 19(6): 36-42 (Nov/Dec 1999).

	In this poster we describe our initial work on generating Augmented Reality (AR) displays in the ...
	1. Introduction
	2. Background and Related Work
	2.1. Registration Error Ranges
	Figure 1. Error volumes around a 3D point, with different tracking error (each volume was rendere...

	3. The LOE Filtering System
	3.1. LOE Object Interface
	Figure 2. Three different augmentations to help the user locate a todo list on the electronic whi...

	3.2. Example: Locate an object

	4. Discussion and Future Work
	5. Acknowledgments
	6. References

	Adapting to Dynamic Registration Errors Using Level of Error (LOE) Filtering

