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Abstract. Recent graph computation approaches have demonstrated
that a single PC can perform efficiently on billion-scale graphs. While
these approaches achieve scalability by optimizing I/O operations, they
do not fully exploit the capabilities of modern hard drives and processors.
To overcome their performance, in this work, we introduce the Bimodal
Block Processing (BBP), an innovation that is able to boost the graph
computation by minimizing the I/O cost even further. With this strat-
egy, we achieved the following contributions: (1) M-Flash, the fastest
graph computation framework to date; (2) a flexible and simple pro-
gramming model to easily implement popular and essential graph algo-
rithms, including the first single-machine billion-scale eigensolver; and
(3) extensive experiments on real graphs with up to 6.6 billion edges,
demonstrating M-Flash’s consistent and significant speedup. The soft-
ware related to this paper is available at https://github.com/M-Flash.

Keywords: Graph algorithms · Graph processing · Graph mining ·
Complex networks

1 Introduction

Large graphs with billions of nodes and edges are increasingly common in many
domains and applications, such as in studies of social networks, transportation
route networks, citation networks, and many others. Distributed frameworks
(find a thorough review in the work of Lu et al. [13]) have become popular
choices for analyzing these large graphs. However, distributed approaches may
not always be the best option, because they can be expensive to build [11], and
hard to maintain and optimize.

These potential challenges prompted researchers to create single-machine,
billion-scale graph computation frameworks that are well-suited to essential
graph algorithms, such as eigensolver, PageRank, connected components and
many others. Examples are GraphChi [11] and TurboGraph [5]. Frameworks
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in this category define sophisticated processing schemes to overcome challenges
induced by limited main memory and poor locality of memory access observed
in many graph algorithms. However, when studying previous works, we noticed
that despite their sophisticated schemes and novel programming models, they
do not optimize for disk operations and data locality, which are the core of
performance in graph processing frameworks.

In the context of single-node, billion-scale, graph processing frameworks, we
present M-Flash, a novel scalable framework that overcomes critical issues
found in existing works. The innovation of M-Flash confers it a performance
many times faster than the state of the art. More specifically, our contributions
include:

1. M-FlashFramework & Methodology: we propose a novel framework
named M-Flash that achieves fast and scalable graph computation. M-
Flash (https://github.com/M-Flash) introduces the Bimodal Block Process-
ing, which significantly boosts computation speed and reduces disk accesses
by dividing a graph and its node data into blocks (dense and sparse) to min-
imize the cost of I/O.

2. Programming Model: M-Flash provides a flexible and simple program-
ming model, which supports popular and essential graph algorithms, e.g.,
PageRank, connected components, and the first single-machine eigensolver
over billion-node graphs, to name a few.

3. Extensive Experimental Evaluation: we compared M-Flash with state-
of-the-art frameworks using large graphs, the largest one having 6.6 bil-
lion edges (YahooWeb https://webscope.sandbox.yahoo.com). M-Flash was
consistently and significantly faster than GraphChi [11], X-Stream [15],
TurboGraph [5], MMap [12], and GridGraph [19] across all graph sizes.
Furthermore, it sustained high speed even when memory was severely con-
strained, e.g., 6.4X faster than X-Stream, when using 4 GB of Random Access
Memory (RAM).

2 Related Works

A typical approach to scalable graph processing is to develop a distributed frame-
work. This is the case of Gbase [7], Powergraph, Pregel, and others [13]. Among
these approaches, Gbase is the most similar to M-Flash. Despite the fact that
Gbase and M-Flash use a block model, Gbase is distributed and lacks an adap-
tive edge processing scheme to optimize its performance. Such scheme is the
greatest innovation of M-Flash, conferring to it the highest performance among
existing approaches, as demonstrated in Sect. 4.

Among the existing works designed for single-node processing, some of them
are restricted to SSDs. These works rely on the remarkable low-latency and
improved I/O of SSDs compared to magnetic disks. This is the case of Turbo-
Graph [5], which relies on random accesses to the edges — not well supported
over magnetic disks. Our proposal, M-Flash, avoids this drawback by avoiding
random accesses.

https://github.com/M-Flash
https://webscope.sandbox.yahoo.com
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Fig. 1. Organization of edges and vertices in M-Flash. Edges (left): example of a
graph’s adjacency matrix (in light blue color) using 3 logical intervals (β = 3); G(p,q)

is an edge block with source vertices in interval I(p) and destination vertices in interval
I(q); SP (p) is a source-partition containing all blocks with source vertices in interval
I(p);DP (q) is a destination-partition containing all blocks with destination vertices in
interval I(q). Vertices (right): the data of the vertices as k vectors (γ1 ... γk), each
one divided into β logical segments. (Color figure online)

GraphChi [11] was one of the first single-node approaches to avoid random
disk/edge accesses, improving the performance over mechanical disks. GraphChi
partitions the graph on disk into units called shards, requiring a preprocessing
step to sort the data by source vertex. GraphChi uses a vertex-centric approach
that requires a shard to fit entirely in memory, including both the vertices in
the shard and all their edges (in and out). As we demonstrate, this fact makes
GraphChi less efficient when compared to our work. M-Flash requires only a
subset of the vertex data to be stored in memory.

MMap [12] introduced an interesting approach based on OS-supported map-
ping of disk data into memory (virtual memory). It allows graph data to be
accessed as if they were stored in unlimited memory, avoiding the need to man-
age data buffering. Our framework uses memory mapping when processing edge
blocks but, with an improved engineering, M-Flash consistently outperforms
MMap, as we demonstrate.

GridGraph [19] divides the graphs into blocks and processes the edges reusing
the vertices’ values loaded in main memory (in-vertices and out-vertices). Fur-
thermore, it uses a two-level hierarchical partitioning to increase the perfor-
mance, dividing the blocks into small regions that fit in cache. When compar-
ing GridGraph with M-Flash, both divide the graph using a similar approach
with a two-level hierarchical optimization to boost computation. However, M-
Flash adds a bimodal partition model over the block scheme to optimize even
more the computation for sparse blocks in the graph.

GraphTwist [18] introduces a 3D cube representation of the graph to add
support for multigraphs. The cube representation divides the edges using three



626 H. Gualdron et al.

partitioning levels: slice, strip, and dice. These representations are equivalent to
the block representation (2D) of GridGraph and M-Flash, with the difference
that it adds one more dimension (slice) to organize the edge metadata for multi-
graphs. The slice dimension filters the edges’ metadata optimizing performance
when not all the metadata is required for computation. Additionally, Graph-
Twist introduces pruning techniques to remove some slices and vertices that
they do not consider relevant in the computation.

M-Flash also draws inspiration from the edge streaming approach introduced
by X-Stream’s processing model [4,15], improving it with fewer I/O operations
for dense regions of the graph. Edge streaming is a sort of stream processing
referring to unrestricted data flows over a bounded amount of buffering. As we
demonstrate, this leads to optimized data transfer by means of less I/O and
more processing per data transfer.

3 M-Flash

The design of M-Flash considers the fact that real graphs have a varying density
of edges; that is, a given graph contains dense regions with many more edges
than other regions that are sparse. In the development of M-Flash, and through
experimentation with existing works, we noticed that these dense and sparse
regions could not be processed in the same way. We also noticed that this was
the reason why existing works failed to achieve superior performance. To cope
with this issue, we designed M-Flash to work according to two distinct processing
schemes: Dense Block Processing (DBP) and Streaming Partition Processing
(SPP). For full performance, M-Flash uses a theoretical I/O cost-based scheme
to decide the kind of processing to use in face of a given block, which can be
dense or sparse. The final approach, which combines DBP and SPP, was named
Bimodal Block Processing (BBP).

3.1 Graph Representation in M-Flash

A graph in M-Flash is a directed graph G = (V,E) with vertices v ∈ V labeled
with integers from 1 to |V |, and edges e = (source, destination), e ∈ E. Each ver-
tex has a set of attributes γ = {γ1, γ2, . . . , γK}; edges also might have attributes
for specific processings.

Blocks in M-Flash: Given a graph G, we divide its vertices V into β intervals
denoted by I(p), where 1 ≤ p ≤ β. Note that I(p) ∩ I(p

′) = ∅ for p �= p′, and⋃
p I(p) = V . Consequently, as shown in Fig. 1, the edges are divided into β2

blocks. Each block G(p,q) has a source node interval p and a destination node
interval q, where 1 ≤ p, q ≤ β. In Fig. 1, for example, G(2,1) is the block that
contains edges with source vertices in the interval I(2) and destination vertices
in the interval I(1). We call this on-disk organization as partitioning. Since M-
Flash works by alternating one entire block in memory for each running thread,
the value of β is automatically determined by the following equation:
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β =
⌈

φ(T + 1) |V |
M

⌉

(1)

where the constant 1 refers to the need of one buffer to store the input vertex
values that are shared between threads (read-only), φ is the amount of data to
represent each vertex, T is the number of threads, |V | is the number of vertices,
and M is the available RAM. For example, 4 bytes of data per node, 2 threads,
a graph with 2 billion nodes, and for 1 GB RAM, β = �(4 × (2 + 1) × (2 ×
109))/(230)� = 23, thus requiring 232 = 529 blocks. The number of threads enters
the equation because all the threads access the same block to avoid multiple
seeks on disk, and they use an exclusive memory buffer to store the vertex data
processed (one buffer per thread), so to prevent “race” conditions.

3.2 The M-Flash Processing Model

This section presents our proposed processing model. We first describe the two
strategies targeted at processing dense or sparse blocks. Next, we present the
novel cost-based optimization used to determine the best processing strategy.

Dense Block Processing (DBP): Figure 2 illustrates the DBP; notice that
vertex intervals are represented by vertical (Source I) and horizontal (Destina-
tion I) vectors. After partitioning the graph into blocks, we process them in a
vertical zigzag order, as illustrated. There are three reasons for this order: (1)
we store the computation results in the destination vertices; so, we can “pin” a

G (3,3)

Source I(2) 

Source I(1) 

Source I(3)

Destination I(3) Destination I(2) Destination I(1) 

G (2,3)

G (1,3)

G (3,2)

G (2,2)

G (1,2)

G (3,1)

G (2,1)

G (1,1)

Fig. 2. M-Flash’s computation schedule for a graph with 3 intervals. Vertex intervals
are represented by vertical (Source I) and horizontal (Destination I) vectors. Blocks
are loaded into memory, and processed in a vertical zigzag manner, indicated by the
sequence of red, orange and yellow arrows. This enables the reuse of input, as when
going from G(3,1) to G(3,2), M-Flash reuses source node interval I(3)), which reduces
data transfer from disk to memory. (Color figure online)
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Fig. 3. Example of DBP I/O operations to process the dense block G(2,1).

Fig. 4. I/O operations for SPP taking SP (3) and DP (1) as illustrative examples. Step 1:
the edges of source-partition SP (3) are sequentially read and combined with the values
of their source vertices from I(3). Next, edges are grouped by destination, and written to
β files, one for each destination partition. Step 2: the files corresponding to destination-
partition DP (1) are sequentially processed according to a given desired computation,
with results written to destination vertices in I(1).

destination interval (e.g., I(1)) and process all the vertices that are sources to
this destination interval (see the red vertical arrow); (2) using this order leads to
fewer reads because the attributes of the destination vertices (horizontal vectors
in the illustration) only need to be read once, regardless of the number of source
intervals. (3) after reading all the blocks in a column, we take a “U turn” (see
the orange arrow) to benefit from the fact that the data associated with the
previously-read source interval is already in memory.

Within a block, besides loading the attributes of the source and des-
tination intervals of vertices into RAM, the corresponding edges e =
〈source, destination, edge properties〉 are sequentially read from disk, as
explained in Fig. 3. These edges, then, are processed using a user-defined func-
tion so to achieve the desired computation. After all blocks in a column are
processed, the updated attributes of the destination vertices are written to disk.

Streaming Partition Processing (SPP): The performance of DBP decreases
for graphs with sparse blocks; this is because, for a given block, we have to read
more data from the source intervals of vertices than from the very blocks of
edges. In such cases, SPP processes the graph using partitions instead of blocks.
A graph partition is a set of blocks sharing the same source node interval – a
line in the logical partitioning, or, similarly, a set of blocks sharing the same
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destination node interval – a column in the logical partitioning. Formally, a
source-partition SP (p) =

⋃
q G(p,q) contains all the blocks with edges having

source vertices in the interval I(p); a destination-partition DP (q) =
⋃

p G(p,q)

contains all the blocks with edges having destination vertices in the interval
I(q). For example, in Fig. 1, SP (1) is the union of blocks G(1,1), G(1,2), and
G(1,3); meanwhile, DP (3) is the union of blocks G(1,3), G(2,3), and G(3,3). In a
graph, hence, there are β source-partitions and β destination-partitions.

Considering the graph organized into partitions, SPP takes two steps (see
Fig. 4). In the first step, for a given source-partition SP (p), it loads the values
of the vertices of the corresponding interval I(p); next, it reads the edges of the
partition SP (p) sequentially from disk, storing them in a buffer together with
their source-vertex values. At this point, it sorts the buffer in memory, grouping
the edges by destination. Finally, it stores the edges on disk into β files, one
for each of the β destination-partitions. This processing is performed for each
source-partition SP (p), 1 ≤ p ≤ β, so to iteratively build the β destination-
partitions.

In the second step, after processing the β source-partitions (each with β
blocks), it is possible to read the β files according to their destinations, so to
logically “build” β destination-partitions DP (q), 1 ≤ q ≤ β, each one containing
edges together with their source-vertex values. For each destination-partition
DP (q), we read the vertices of interval I(q); next, we sequentially read the edges,
processing their values through a user-defined function. This function uses the
properties of the vertices and of the edges to perform specific computations
whose results will update the vertices. Finally, SPP stores the updated vertices
of interval I(q) back on disk.

Bimodal Block Processing (BBP): Schemes DBP and SPP improve the
performance in complementary circumstances. But, How can we decide which
processing scheme to use when we are given a graph block to process? To answer
this question, we join DBP and SPP into a single scheme – the Bimodal Block
Processing (BBP). The combined scheme uses the theoretical I/O cost model
proposed by Aggarwal and Vitter [1] to decide for SBP or SPP. In this model,
the I/O cost of an algorithm is equal to the number of disk blocks with size B
transferred between disk and memory plus the number of non-sequential reads
(seeks). Since we use this model to choose the scheme with the smaller cost, we
need to algebraically determine the cost of each scheme, as follows.

For processing a graph G = {V,E}, DBP performs the following operations:
it reads the |V | vertices β times and it writes the |V | vertices once; it also reads
the |E| edges once – disk blocks of size B, vertices and edges with constant sizes
omitted from the equation for simplification. β2 seeks are necessary because the
edges are read sequentially. Hence, the I/O cost for DBP is given by:

O (DBP (G)) = O

(
(β + 1) |V | + |E|

B
+ β2

)

(2)

In turn, SPP initially reads the |V | source vertices and the |E| edges; then,
still in its first step, it sorts (simple shuffling) the |E| edges grouping them by
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destination into a set of edges and vertices |Ê|, writing them to disk. In its second
step, it reads the Ê edges/vertices to perform the update operation, writing |V |
destination vertices back to disk. The I/O cost for SPP comes to be:

O (SPP (G)) = O

⎛

⎝
2 |V | + |E| + 2

∣
∣
∣Ê

∣
∣
∣

B
+ β

⎞

⎠ (3)

Equations 2 and 3 define the I/O cost for one processing iteration over the
whole graph G. However, in order to decide in relation to the graph blocks, we
are interested in the costs of Eqs. 2 and 3 divided by the number of graph blocks
β2. The result, after the appropriate algebra, reduces to Eqs. 4 and 5.

O
(
DBP

(
G(p,q)

))
= O

(
ϑφ (1 + 1/β) + ξψ

B

)
(4)

O
(
SPP

(
G(p,q)

))
= O

(
2ϑφ/β + 2ξ(φ + ψ) + ξψ

B

)
(5)

where ξ is the number of edges in G(p,q), ϑ is the number of vertices in the
interval, and φ and ψ are, respectively, the number of bytes to represent a vertex
and an edge e. Once we have the costs per graph block of DBP and SPP, we can
decide between one and the other by simply analyzing the ratio SPP/DBP:

O

(
SPP

DBP

)
= O

(
1

β
+

2ξ

ϑ

[
1 +

ψ

φ

])
(6)

This ratio leads to the final decision equation:

BlockType
(
G(p,q)

)
=

{
sparse, if O

(
SPP
DBP

)
< 1

dense, otherwise
(7)

We apply Eq. 6 to select the best option according to Eq. 7. With this scheme,
BBP is able to select the best processing scheme for each graph block. In Sect. 4,
we demonstrate that this procedure yields a performance superior than the cur-
rent state-of-the-art frameworks.

Algorithm 1. MAlgorithm: Algorithm Interface for coding in M-Flash
initialize (Vertex v)
process (Vertex u, Vertex v, EdgeData data)
gather (Accum v 1, Accum v 2, Accum v out)
apply (Vertex v)

Algorithm 2. PageRank in M-Flash
degree(v): = out degree for Vertex v
initialize(v): v.value = 0
process(u, v, data): v.value += u.value/ degree(u)
gather(v 1, v 2, v out): v out = v 1 + v 2
apply(v): v.value = 0.15 + 0.85 * v.value
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Algorithm 3. Algorithm M-Flash
Input: Graph G(V, E) and vertex attributes γ
Input: user-defined MAlgorithm program
Input: memory size M and number of iterations iter
Output: vector v with vertex results
1: set φ from γ attributes, and β using Eq. 1. ϑ = |V | /β
2: execute graph preprocessing and partitioning
3: for i = 1 to iter do
4: execute the first step of SPP (Fig. 4) to process the sparse source-partitions
5: for q = 1 to β do
6: load vertex values of destination interval I(q)

7: initialize I(q) of v using MAlgorithm.initialize
8: if there is a sparse destination-partition associated with I(q) then
9: for each edge

10: invoke MAlgorithm.process storing results in vector v

11: if q is odd then
12: partition-order = {1 to β}
13: else
14: partition-order = {β to 1}
15: for p = {partition-order} do
16: if G(p,q) is dense then
17: load vertex values of source interval I(p)

18: for each edge in G(p,q)

19: invoke MAlgorithm.process storing results in vector v

20: invoke MAlgorithm.gather for I(q) of v
21: invoke MAlgorithm.apply for I(q) of v
22: store interval I(q) of vector v

3.3 Programming Model in M-Flash

The M-Flash’s computational model, which we named MAlgorithm (short for
Matrix Algorithm Interface) is shown in Algorithm1. Since MAlgorithm is a
vertex-centric model, it stores computation results in the destination vertices,
allowing for a vast set of iterative computations, such as PageRank, Random
Walk with Restart, Weakly Connected Components, Sparse Matrix Vector Mul-
tiplication, Eigensolver, and Diameter Estimation.

The MAlgorithm interface has four operations: initialize, process, gather,
and apply. The initialize operation, optionally, loads the initial value of each
destination vertex; the process operation receives and processes the data from
incoming edges (neighbors) – this is where the desired processing occurs; the
gather operation joins the results from the multiple threads so to consolidate a
single result; finally, the apply operation is able to perform finalizing operations,
such as normalization – apply is optional.
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3.4 System Design and Implementation

M-Flash starts by preprocessing an input graph dividing the edges into β par-
titions and counting the number of edges per logical block (β2 blocks), at the
same time that the blocks are classified as sparse or dense using Eq. 7. Note
that M-Flash does not sort the edges during preprocessing, it simply divides
them into β2 blocks, β2 
 |V |. In a second preprocessing, M-Flash processes
the graph according to the organization given by the concept of source-partition
as seen in Sect. 3.2. At this point, blocks are only a logical organization, while
partitions are physical. The source-partitions are read and, whenever a dense
block is found, the corresponding edges are extracted from the partition and
a file is created for this block in preparation for DBP; the remaining edges in
the source-partition will be ready for processing using SPP. Notice that, after
the second preprocessing, the logical blocks classified as dense, are materialized
into physical files. The total I/O cost for preprocessing is 4|E|

B , where B is the
size of each block transferred between disk and memory. Algorithm 3 shows the
pseudo-code of M-Flash.

4 Evaluation

We compare M-Flash (https://github.com/M-Flash) with multiple state-of-the-
art approaches: GraphChi, TurboGraph, X-Stream, MMap, and GridGraph. For
a fair comparison, we used the experimental setups recommended by the respec-
tive authors. GridGraph did not publish nor share its code, so the compari-
son is based on the results reported in its publication. We omit the compari-
son with GraphTwist because it is not accessible and its published results are
based on a hardware that is less powerful than ours. We use four graphs at
different scales (See Table 1), and we compare the runtimes of all approaches
for two well-known essential algorithms PageRank (Subsect. 4.2) and Weakly
Connected Components (Subsect. 4.3). To demonstrate how M-Flash general-
izes to more algorithms, we implemented the Lanczos algorithm (with selective
orthogonalization), which is one of the most computationally efficient approaches
to computing eigenvalues and eigenvectors [8] (Subsect. 4.4). To the best of
our knowledge, M-Flash provides the first design and implementation of
Lanczos that can handle graphs with more than one billion nodes. Next, in Sub-
sect. 4.5, we show that M-Flash maintains its high speed even when the machine
has little RAM (including extreme cases, like 4 GB), in contrast to the other
methods. Finally, through a theoretical analysis of I/O, we show the reasons for
the performance increase using the BBP strategy (Subsect. 4.6).

4.1 Experimental Setup

All experiments ran on a standard personal computer equipped with a four-core
Intel i7-4500U CPU (3 GHz), 16 GB RAM, and 1 TB 540-MB/s (max) SSD disk.
Note that M-Flash does not require an SSD to run, which is not the case for

https://github.com/M-Flash
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Table 1. Graph datasets used in our experiments.

Graph Nodes Edges Size

LiveJournal [2] 4,847,571 68,993,773 Small

Twitter [10] 41,652,230 1,468,365,182 Medium

YahooWeb 1,413,511,391 6,636,600,779 Large

R-Mat (Synthetic graph) 4,000,000,000 12,000,000,000 Large

all frameworks, like TurboGraph. We used an SSD, nevertheless, to make sure
that all methods can perform at their best. Table 1 shows the datasets used
in our experiments. GraphChi, X-Stream, MMap, and M-Flash ran on Linux
Ubuntu 14.04 (x64). TurboGraph ran on Windows (x64). All the reported times
correspond to the average time of three cold runs, that is, with all caches and
buffers purged between runs to avoid any potential advantage due to caching or
buffering.

Table 2. Runtime (in seconds) with 8 GB of RAM. The symbol “-” indicates that the
corresponding system failed to process the graph or the information is not available in
the respective papers.

GraphChi X-Stream TurboGraph MMap GridGraph M-Flash

PageRank

LiveJournal (10
iter.)

33.1 10.5 7.9 18.2 6.4 5.3

Twitter (10
iter.)

1,199 962 241 186 269 173

YahooWeb (1
iter.)

642 668 628 1,245 235.95 195

R-Mat (1 iter.) 2,145 1,360 - - - 745

Connected Components

LiveJournal
(Union Find)

3.2 5.7 4.4 10.7 4.4 1.3

Twitter (Union
Find)

70 1,038 128 45 287 25

YahooWeb
(WCC - 1
iter.)

668 889 - - - 125

R-Mat (WCC -
1 iter.)

3,334 2,167.63 - - - 663.17
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4.2 PageRank

Table 2 presents the PageRank runtime of all the methods, as discussed next.

LiveJournal (small graph): Since the whole graph fits in RAM, all approaches
finish in seconds. Still, M-Flash was the fastest, up to 6X faster than GraphChi,
3X than MMap, and 2X than X-Stream.

Twitter (medium graph): The edges of this graph do not fit in RAM (it requires
11.3 GB) but its node vectors do. M-Flash had a similar performance if compared
to MMap, however, MMap is not a generic framework, rather it is based on
dedicated implementations, one for each algorithm. Still, M-Flash was faster.
In comparison to GraphChi and X-Stream, the related works that offer generic
programming models, M-Flash was the fastest, 5.5X and 7X faster, respectively.

YahooWeb (large graph): For this billion-node graph, neither its edges nor
its node vectors fit in RAM; this challenging situation is where M-Flash has
notably outperformed the other methods. The results of Table 2 confirm this
claim, showing that M-Flash provides a speed that is 3X to 6.3X faster that
those of the other approaches.

R-Mat (Synthetic large graph): For our big graph, we compared only
GraphChi, X-Stream, and M-Flash because TurboGraph and MMap require
indexes or auxiliary files that exceed our current disk capacity. GridGraph was
not considered in the comparison because its paper does not provide information
about R-Mat graphs with a similar scale. Table 2 shows that M-Flash is 2X and
3X faster that X-Stream and GraphChi respectively.

4.3 Weakly Connected Components (WCC)

When there is enough memory to store all the vertex data, the Union Find
algorithm [16] is the best option to find all the WCCs in one single iteration.
Otherwise, with memory limitations, an iterative algorithm produces identical
solutions. Hence, in this round of experiments, we use Algorithm Union Find to
solve WCC for the small and medium graphs, whose vertices fit in memory; and
we use an iterative algorithm for the YahooWeb graph.

Table 2 shows the runtimes for the LiveJournal and Twitter graphs with 8 GB
RAM; all approaches use Union Find, except X-Stream. This is because of the
way that X-Stream is implemented, which handles only iterative algorithms. In
the WCC problem, M-Flash is again the fastest method with respect to the entire
experiment: for the LiveJournal graph, M-Flash is 3x faster than GraphChi, 4.3X
than X-Stream, 3.3X than TurboGraph, and 8.2X than MMap. For the Twitter
graph, M-Flash’s speed is 2.8X faster than GraphChi, 41X than X-Stream, 5X
than TurboGraph, 2X than MMap, and 11.5X than GridGraph.

In the results of the YahooWeb graph, one can see that M-Flash was signifi-
cantly faster than GraphChi, and X-Stream. Similarly to the PageRank results,
M-Flash is pronouncedly faster: 5.3X faster than GraphChi, and 7.1X than X-
Stream.
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4.4 Spectral Analysis Using the Lanczos Algorithm

Eigenvalues and eigenvectors are at the heart of numerous algorithms, such as
singular value decomposition (SVD) [3], spectral clustering, triangle counting
[17], and tensor decomposition [9]. Hence, due to its importance, we demonstrate
M-Flash over the Lanczos algorithm, a state-of-the-art method for eigen compu-
tation. We implemented it using method Selective Orthogonalization (LSO). To
the best of our knowledge, M-Flash provides the first design and implemen-
tation that can handle Lanczos for graphs with more than one billion nodes.
Different from the competing works, M-Flash provides functions for basic vector
operations using secondary memory. Therefore, for the YahooWeb graph, we are
not able to compare it with the other frameworks using only 8 GB of memory.

To compute the top 20 eigenvectors and eigenvalues of the YahooWeb graph,
one iteration of LSO over M-Flash takes 737 s when using 8 GB of RAM. For
a comparative panorama, to the best of our knowledge, the closest comparable
result of this computation comes from the HEigen system [6], at 150 s for one
iteration; note however that, it was for a much smaller graph with 282 million
edges (23X fewer edges), using a 70-machine Hadoop cluster, while our experi-
ment with M-Flash used a single personal computer and a much larger graph.

4.5 Effect of Memory Size

Since the amount of memory strongly affects the computation speed of single-
node graph processing frameworks, here, we study the effect of memory size.
Figure 5 summarizes how all approaches perform under 4 GB, 8 GB, and 16 GB
of RAM when running one iteration of PageRank over the YahooWeb graph.
M-Flash continues to run at the highest speed even when the machine has very
little RAM, 4 GB in this case. Other methods tend to slow down. In special,
MMap does not perform well due to thrashing, a situation when the machine
spends a lot of time on mapping disk-resident data to RAM or unmapping
data from RAM, slowing down the overall computation. For 8 GB and 16 GB,
respectively, M-Flash outperforms all the competitors for the most challenging
graph, the YahooWeb. Notice that all the methods, but for M-Flash and X-
Stream, are strongly influenced by restrictions in memory size; according to our
analyses, this is due to the higher number of data transfers needed by the other
methods when not all the data fit in the memory. Despite that X-Stream worked
efficiently for any memory setting, it still has worse performance if compared to
M-Flashbecause it demands three full disk scans in every case – actually, the
innovations of M-Flash, as presented in Sect. 3, were designed to overcome such
problem.

4.6 Theoretical (I/O) Analysis

Following, we show the theoretical scalability of M-Flash when we reduce the
available memory at the same time that we demonstrate why the performance of
M-Flash improves when we combine DBP and SPP into BBP, instead of using
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Fig. 5. Runtime comparison for PageRank over the YahooWeb graph. M-Flash is sig-
nificantly faster than all the state-of-the-art competitors for three different memory
settings, 4GB, 8GB, and 16GB.

DBP or SPP alone. Here, we use a measure that we named t-cost ; 1 unit of t-cost
corresponds to three operations, one reading of the vertices, one writing of the
vertices, and one reading of the edges. In terms of computational complexity,
t-cost is defined as follows:

t-cost(G(E, V )) = 2 |V | + |E| (8)

Notice that this cost considers that reading and writing the vertices have the
same cost; this is because the evaluation is given in terms of computational
complexity. For more details, please refer to the work of McSherry et al. [14],
who draws the basis of this kind of analysis.

We measure the t-cost metric to analyze the theoretical scalability for
processing schemes DBP only, SPP only, and BBP . We perform these analy-
ses using MatLab simulations that were validated empirically. We considered
the characteristics of the three datasets used so far, LiveJournal, Twitter, and
YahooWeb. For each case, we calculated the t-cost (y-axis) as a function of the
available memory (x-axis), which, as we have seen, is the main constraint for
graph processing frameworks.

Figure 6 shows that, for all the graphs, DBP-only processing is the least
efficient when memory is reduced; however, when we combine DBP (for dense
region processing) and SPP (for sparse region processing) into BBP, we benefit
from the best of both worlds. The result corresponds to the best performance, as
seen in the charts. Figure 7 shows the same simulated analysis – t-cost (y-axis)
in function of the available memory (x-axis), but now with an extra variable: the
density of hypothetical graphs, which is assumed to be uniform in each analysis.
Each plot, from (a) to (d) considers a different density in terms of average
vertex degree, respectively, 3, 5, 10, and 30. In each plot, there are two curves,
one corresponding to DBP-only, and one for SPP-only; and, in dark blue, we
depict the behavior of M-Flash according to combination BBP. Notice that, as
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Fig. 6. I/O cost using DBP, SPP, and BBP for LiveJournal, Twitter and YahooWeb
Graphs using different memory sizes. BBP model always performs fewer I/O operations
on disk for all memory configurations.

Fig. 7. I/O cost using DBP, SPP, and BBP for a graph with average degree (density)
k = {3, 5, 10, 30}, where |E| ≈ k|V |, and varying amount of memory (Color figure
online)

the amount of memory increases, so does the performance of DBP, which takes
less and less time to process the whole graph (decreasing curve). SPP, in turn,
has a steady performance, as it is not affected by the amount of memory (light
blue line). In dark blue, one can see the performance of BBP; that is, which kind
of processing will be chosen by Eq. 7 at each circumstance. For sparse graphs,
Figs. 7(a) and (b), SPP answers for the greater amount of processing; while the
opposite is observed in denser graphs, Figs. 7(c) and (d), when DBP defines
almost the entire dark blue line of the plot.

These results show that the graph processing must take into account the
density of the graph at each moment (block) so to choose the best strategy. It
also explains why M-Flash improves the state of the art. It is important to note
that no former algorithm considered the fact that most graphs present varying
density of edges (dense regions with many more edges than other regions that
are sparse). Ignoring this fact leads to a decreased performance in the form of
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a higher number of data transfers between memory and disk, as we empirically
verified in the former sections.

4.7 Preprocessing Time

Table 3 shows the preprocessing times for each graph using 8 GB of RAM. As
one can see, M-Flash has a competitive preprocessing runtime. It reads and
writes two times the entire graph on disk, which is the third best performance,
after MMap and X-Stream. GridGraph and GraphTwist, in turn, demand a pre-
processing that divides the graph using blocks in a way similar to M-Flash. We
did not compare preprocessing with these frameworks because, as already dis-
cussed, we do not have their source code. Despite the extra preprocessing time
required by M-Flash – if compared to MMap and X-Stream, the total processing
time (preprocessing + processing with only one iteration) for algorithms PageR-
ank and WCC over the YahooWeb graph, is of 1, 460s and 1, 390s, still, 29 % and
4 % better than the total time of MMap and X-Stream respectively. Note that
the algorithms are iterative and M-Flash needs only one iteration to overcome
its competitors.

Table 3. Preprocessing time (seconds).

LiveJournal Twitter YahooWeb R-Mat

GraphChi 23 511 2,781 7,440

X-Stream 5 131 865 2,553

TurboGraph 18 582 4,694 -

MMap 17 372 636 -

M-Flash 10 206 1,265 4,837

5 Conclusions

We proposed M-Flash, a single-machine, billion-scale graph computation frame-
work that uses a block partition model to optimize the disk I/O. M-Flash uses an
innovative design that takes into account the variable density of edges observed
in the different blocks of a graph. Its design uses Dense Block Processing (DBP)
when the block is dense, and Streaming Partition Processing (SPP) when the
block is sparse. In order to take advantage of both worlds, it uses the combina-
tion of DBP and SPP according to the Bimodal Block Processing (BBP) scheme,
which is able to analytically determine whether a block is dense or sparse, so
to trigger the appropriate processing. To date, our proposal is the first frame-
work that considers a bimodal approach for I/O minimization, a fact that, as we
demonstrated, granted M-Flash the best performance compared to the state of
the art (GraphChi, X-Stream, TurboGraph, MMap, and GridGraph); notably,
even when memory is severely limited.
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The findings observed in the design of M-Flash are a step further in deter-
mining an ultimate graph processing paradigm. We expect the research in this
field to consider the criterion of block density as a mandatory feature in any such
framework, consistently advancing the research on high-performance processing.
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