Getting Started With Data Science & Machine Learning

Duen Horng (Polo) Chau
Associate Professor & ML Area Leader, College of Computing
Associate Director, MS Analytics
Georgia Tech

Twitter: @PoloChau
(Some of the) 11 Lessons Learned from Working with Tech Companies (Facebook, Google, Intel, eBay, Symantec)
Google “Polo Chau” if interested in my professional life.

Duen Horng (Polo) Chau

Associate Professor, School of Computational Science & Engineering
Associate Director, MS in Analytics
Director of Industry Relations, The Institute for Data Engineering and Science
Associate Director of Corporate Relations, The Center for Machine Learning
Machine Learning Area Leader, College of Computing
Georgia Tech

LinkedIn Twitter Google Scholar YouTube

Admin: Carolyn Young Financial Manager: Arlene Washington
polo@gatech.edu www.cc.gatech.edu/~dchau
Office: CODA 1321 404-385-7682

| POSITIONS |

Oct 2019 - Director of Industry Relations
Institute for Data Engineering and Science, Georgia Tech

Oct 2019 - Associate Director of Corporate Relations for Machine Learning
The Center for Machine Learning, Georgia Tech

May 2014 - Associate Director
MS in Analytics, Georgia Tech

Aug 2018 - Associate Professor
School of Computational Science & Engineering, Georgia Tech

Aug 2012 - Aug 2018 - Assistant Professor
School of Computational Science & Engineering, Georgia Tech

Students (see all)
Rahul Duggal, CS PhD
Austin Wright, ML PhD
Zijie (Jay) Wang, ML PhD
Haekyu Park, CS PhD
Scott Freitas, ML PhD
Nilaksh Das, CSE PhD
Fred Hohman, CSE PhD
Jonathan Leo, CS UG
Rob Firstman, CS UG
Omar Shaikh, CS UG
Jon Saad-Falcon, CS UG
Robert Turko, CS UG
Zhiyan (Frank) Zhou, CS UG
Anish Upadhyay, CS UG
Megan Dass, CS UG
Alex Yang, CS UG
Kevin Li, CS UG

Recent Alumni (see all)
Sanjev Thakur, CS UG

Scalable. Interactive. Interpretable.
Scalable. Interactive. Interpretable.

At Georgia Tech, we innovate scalable, interactive, and interpretable tools that amplify human's ability to understand and interact with billion-scale data and machine learning models. Our current research thrusts: human-centered AI (interpretable, fair, safe AI; adversarial ML); large graph visualization and mining; cybersecurity; and social good (health, energy).
At Georgia Tech, I teach **Data & Visual Analytics**

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course Websites</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>Fall</td>
<td>Campus 6242 & 4242</td>
<td>1277</td>
</tr>
<tr>
<td>2020</td>
<td>Spring</td>
<td>Campus 6242 & 4242</td>
<td>966</td>
</tr>
<tr>
<td>2019</td>
<td>Fall</td>
<td>Campus 6242 & 4242</td>
<td>877</td>
</tr>
<tr>
<td>2019</td>
<td>Spring</td>
<td>Campus 6242 & 4242</td>
<td>1000</td>
</tr>
<tr>
<td>2018</td>
<td>Fall</td>
<td>Campus 6242 & 4242</td>
<td>677</td>
</tr>
<tr>
<td>2018</td>
<td>Spring</td>
<td>Campus 6242 & 4242</td>
<td>287</td>
</tr>
<tr>
<td>2017</td>
<td>Fall</td>
<td>Campus 6242 & 4242</td>
<td>273</td>
</tr>
<tr>
<td>2017</td>
<td>Spring</td>
<td>Campus 6242 & 4242</td>
<td>214</td>
</tr>
<tr>
<td>2016</td>
<td>Fall</td>
<td>Campus 6242 & 4242</td>
<td>215</td>
</tr>
<tr>
<td>2016</td>
<td>Spring</td>
<td>Campus 6242 & 4242</td>
<td>187</td>
</tr>
<tr>
<td>2015</td>
<td>Fall</td>
<td>Campus 6242 & 4242</td>
<td>146</td>
</tr>
<tr>
<td>2015</td>
<td>Spring</td>
<td>Campus 6242 & 4242</td>
<td>113</td>
</tr>
<tr>
<td>2014</td>
<td>Fall</td>
<td>Campus 6242 & 4242</td>
<td>118</td>
</tr>
<tr>
<td>2014</td>
<td>Spring</td>
<td>Campus 6242 & 4242</td>
<td>95</td>
</tr>
<tr>
<td>2013</td>
<td>Spring</td>
<td>Campus 6242 & 4242</td>
<td>35</td>
</tr>
</tbody>
</table>
You (likely) need to learn many things.

What are the “ingredients”?

Need to think (a lot) about: storage, complex system design, scalability of algorithms, visualization techniques, interaction techniques, statistical tests, etc.
Good news! Many jobs!

Most companies looking for “data scientists”

The data scientist role is critical for organizations looking to extract insight from information assets for ‘big data’ initiatives and requires a broad combination of skills that may be fulfilled better as a team

- Gartner (http://www.gartner.com/it-glossary/data-scientist)

Breadth of knowledge is important.
The World of Data

- Number of emails sent every second: 2.9 million
- Data consumed by households each day: 375 megabytes
- Video uploaded to YouTube every minute: 20 hours
- Data per day processed by Google: 24 petabytes
- Tweets per day: 50 million
- Total minutes spent on Facebook each month: 700 billion
- Data sent and received by mobile internet users: 1.3 exabytes
- Products ordered on Amazon per second: 72.9 items

Sources: Cisco, comScore, MapR, Harvard Business Review, Twitter, YouTube

In the 21st century, we live a large part of our lives online. Almost everything we do is reduced to bits and sent through cables around the world at light speed. But just how much data are we generating? This is a look at just some of the massive amounts of information that human beings create every single day.

A collaboration between Good and Oliver Munday
Lesson 2

Learn **data science concepts** and **key generalizable techniques** to **future-proof** yourselves.

And here’s a good book.
A critical skill in data science is the ability to decompose a data-analytics problem into pieces such that each piece matches a known task for which tools are available. Recognizing familiar problems and their solutions avoids wasting time and resources reinventing the wheel. It also allows people to focus attention on more interesting parts of the process that require human involvement—parts that have not been automated, so human creativity and intelligence must come into play.

FREE for all Georgia Tech users at O’Reilly’s Safari Books Online (and also many other data science related books)
Great news!
Few principles!!

1. Classification
2. Regression
3. Similarity Matching
4. Clustering
5. Co-occurrence grouping
 (aka frequent items mining, association rule discovery, market-basket analysis)
6. Profiling
 (related to pattern mining, anomaly detection)
7. Link prediction / recommendation
8. Data reduction
 (aka dimensionality reduction)
9. Causal modeling
Data are dirty.
Always have been.
And always will be.

You will likely spend majority of your time cleaning data. And that’s important work!
Otherwise, *garbage in, garbage out.*
How dirty is real data?

Examples

- Jan 19, 2016
- January 19, 16
- 1/19/16
- 2006-01-19
- 19/1/16

How dirty is real data?

Examples

- duplicates
- empty rows
- abbreviations (different kinds)
- difference in scales / inconsistency in description / sometimes include units
- typos
- missing values
- trailing spaces
- incomplete cells
- synonyms of the same thing
- skewed distribution (outliers)
- bad formatting / not in relational format (in a format not expected)
“80%” Time Spent on Data Preparation

Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says [Forbes]

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets: 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%
Welcome!

OpenRefine (formerly Google Refine) is a powerful tool for working with messy data: cleaning it; transforming it from one format into another; extending it with web services; and linking it to databases like Freebase.

Please note that since October 2nd, 2012, Google is not actively supporting this project, which has now been rebranded to OpenRefine. Project development, documentation and promotion is now fully supported by volunteers. Find out more about the history of OpenRefine and how you can help the community.

Using OpenRefine - The Book

Using OpenRefine, by Ruben Verborgh and Max De Wilde, offers a great introduction to OpenRefine. Organized by recipes with hands on examples, the book covers the following topics:

- Import data in various formats
- Explore datasets in a matter of seconds
Python is a king.

Some say R is.

In practice, you may want to use the ones that have the widest community support.
Python

One of “big-3” programming languages at tech firms like Google.

- **Java** and **C++** are the other two.

Easy to write, read, run, and debug

- General programming language, tons of libraries (e.g., Scikit-learn, Pandas, NumPy, TensorFlow, PyTorch)

- Works well with others (a great “glue” language)
Lesson 5

You’ve got to know **SQL** and **algorithms** (and Big-O)

(Even though job descriptions may not mention them.)

Why?
(1) Many datasets stored in databases.
(2) You need to know if an algorithm can **scale** to large amount of data
Lesson 6

Visualization is **NOT** only about “making things look pretty”

(Aesthetics is important too)

Key is to design **effective** visualization to:

(1) **communicate** and
(2) help people **gain insights**
Why **visualize** data? Why not automate?

Anscombe’s Quartet

![Graphs of Anscombe’s Quartet](https://en.wikipedia.org/wiki/A...27s_quartet)
Designing **effective** visualization is not hard if you learn the principles.

Easy, because…

Simple charts *(bar charts, line charts, scatterplots)* are incredibly effective; handles most practical needs!
Designing **effective** visualization is not hard if you learn the principles.

Colors (even grayscale) must be used carefully
Designing **effective** visualization is not hard if you learn the principles.

Charts can mislead (sometimes intentionally)
Industry moves fast. So should you.

Be *cautiously optimistic*. And be very careful of *hype*.

There were 2 AI winters.

Lesson 11

Your soft skills can be more important than your hard skills.

If people don’t understand your approach, they won’t appreciate it.
Getting Started With Data Science and Machine Learning

Duen Horng (Polo) Chau
Associate Professor & ML Area Leader, College of Computing
Associate Director, MS Analytics
Georgia Tech

Twitter: @PoloChau