Image Stitching
Based almost entirely on a presentation by Matthew Brown and David Lowe at ICCV 2003
Introduction

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
Introduction

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV = 200 x 135°
Introduction

Are you getting the whole picture?
- Compact Camera FOV = 50 x 35°
- Human FOV = 200 x 135°
- Panoramic Mosaic = 360 x 180°
Human FOV

www.inition.co.uk/inition/guide_hmds_vrar.htm
Why “Recognising Panoramas”?

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images
Why “Recognising Panoramas”?

- **1D Rotations** (θ)
 - Ordering \Rightarrow matching images

- **2D Rotations** (θ, ϕ)
 - Ordering $\not\Rightarrow$ matching images
Why “Recognising Panoramas”?

• 2D Rotations (θ, ϕ)
 - Ordering \neq matching images
Why “Recognising Panoramas”?

- 2D Rotations (θ, ϕ)
 - Ordering $\not\Rightarrow$ matching images
Why “Recognising Panoramas”?
Overview

- Feature Matching
 - SIFT Features
 - Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Invariant Features

SIFT Features

- **Invariant Features**
 - Establish invariant frame
 - Maxima/minima of scale-space DOG \(\Rightarrow x, y, s \)
 - Maximum of distribution of local gradients \(\Rightarrow \theta \)
 - Form descriptor vector
 - Histogram of smoothed local gradients
 - 128 dimensions

- **SIFT features are...**
 - Geometrically invariant to similarity transforms,
 - some robustness to affine change
 - Photometrically invariant to affine changes in intensity
Overview

- Feature Matching
 - SIFT Features
 - Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Nearest Neighbour Matching

- Find k-NN for each feature
 - k ≈ number of overlapping images (we use k = 4)
- Use k-d tree
 - k-d tree recursively bi-partitions data at mean in the dimension of maximum variance
 - Approximate nearest neighbours found in O(nlogn)
Overview

- Feature Matching
- Image Matching
 - RANSAC for Homography
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
RANSAC for Homography
RANSAC for Homography
RANSAC for Homography
Overview

- Feature Matching
- Image Matching
 - RANSAC for Homography
 - Finding the panoramas
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Finding the panoramas
Finding the panoramas
Finding the panoramas
Finding the panoramas
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
 - Error function
- Multi-band Blending
- Results
- Conclusions
Error function

- Sum of squared projection errors

\[e = \sum_{i=1}^{n} \sum_{j \in I(i)} \sum_{k \in F(i,j)} f(r_{ij}^k)^2 \]

- \(n = \#\text{images} \)
- \(I(i) = \text{set of image matches to image } i \)
- \(F(i, j) = \text{set of feature matches between images } i, j \)
- \(r_{ij}^k = \text{residual of } k\text{th feature match between images } i, j \)

- Robust error function \(f(x) = \begin{cases}
|x|, & \text{if } |x| < x_{max} \\
x_{max}, & \text{if } |x| \geq x_{max}
\end{cases} \)
Homography for Rotation

- Parameterise each camera by rotation and focal length

\[R_i = e^{[\theta_i]_x}, \quad [\theta_i]_x = \begin{bmatrix} 0 & -\theta_{i3} & \theta_{i2} \\ \theta_{i3} & 0 & -\theta_{i1} \\ -\theta_{i2} & \theta_{i1} & 0 \end{bmatrix} \]

\[K_i = \begin{bmatrix} f_i & 0 & 0 \\ 0 & f_i & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[\tilde{u}_i = H_{ij}\tilde{u}_j, \quad H_{ij} = K_iR_iR_j^TK_j^{-1} \]

- This gives pairwise homographies
Bundle Adjustment

- New images initialised with rotation,
Bundle Adjustment

- New images initialised with rotation,
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Warping
- Results
- Conclusions
Warping

- Take Notes
- Key
 - iterate in **target** image
 - calculate corresponding source pixel
 - resample
 - nearest neighbor (bad)
 - bilinear (better)
 - bicubic (best)
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Multi-band Blending

Burt & Adelson 1983
2-band Blending

Low frequency ($\lambda > 2$ pixels)

High frequency ($\lambda < 2$ pixels)
Linear Blending
2-band Blending
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Results
Results

http://www.cs.ubc.ca/~mbrown/panorama/panorama.html

Autopano: based on UBC’s code

live demo