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Abstract—Content delivery networks (CDNs) deploy globally

distributed systems of caches in a large number of autonomous

systems (ASes). It is important for a CDN operator to satisfy

the performance requirements of end users, while minimizing

the cache deployment cost. In this paper, we study the cache

deployment optimization (CaDeOp) problem of determining how

much server, energy, and bandwidth resources to provision in

each cache AS, i.e., each AS chosen for cache deployment. The

CaDeOp objective is to minimize the total cost incurred by the

CDN, subject to meeting the end-user performance requirements.

We formulate the CaDeOp problem as a mixed integer program

(MIP) and solve it for realistic AS-level topologies, traffic de-

mands, and non-linear energy and bandwidth costs. We also

evaluate the sensitivity of the results to our parametric assump-

tions. When the end-user performance requirements become

more stringent, the CDN footprint rapidly expands, requiring

cache deployments in additional ASes and geographical regions.

Also, the CDN cost increases several times, with the cost balance

shifting toward bandwidth and energy costs. On the other hand,

the traffic distribution among the cache ASes stays relatively

even, with the top 20% of the cache ASes serving around 30%

of the overall traffic.

I. INTRODUCTION

CDNs (Content Delivery Networks) have revolutionized
Internet data dissemination by storing content in their ge-
ographically distributed caches and thereby improving the
experience of end users [1], [2]. The proximity of the CDN
caches to the end users provides low-latency low-loss paths
between the caches and the users, increasing the performance.
Originally designed to deliver web content, video content, and
file downloads, CDNs currently serve a much broader family
of applications, including social networks, e-commerce sites,
CRM (customer relationship management) portals, and web-
based SaaS (software as a service).

CDNs play an important role in the economic structure of
the Internet ecosystem. Content providers, such as the New
York Times, Netflix, or Facebook, pay CDNs for delivering
their content to end users with greater reliability, performance,
and scalability than what is possible directly over the In-
ternet. The Internet is a best-effort network and does not
provide performance guarantees or a globally differentiated
delivery service. Part of the reason is that the Internet infras-
tructure consists of tens of thousands of independent ASes
(Autonomous Systems) that are owned by separate business
entities who do not cooperatively optimize end-to-end perfor-
mance for the users [3]. CDNs succeed by deploying widely in

a large number of ASes and creating an overlay network that
is capable of delivering better end-to-end performance than
the Internet underlay can.

The CDN delivery quality is subject to trade-offs with the
CDN cost. While the very existence of CDNs hinges on
their ability to improve upon the direct Internet delivery, a
better delivery requires a larger and more costly footprint
of the distributed caches. Furthermore, the optimal trade-offs
between footprint/cost and performance change over time.
Real-world commercial CDNs have caches in thousands of
ASes and keep expanding their AS presence to provide greater
performance by being closer to the end users [4].

There are many types of ASes. Access ASes focus on
providing last-mile Internet access to end users. Transit ASes
in the Internet core provide traffic-delivery services to ac-
cess ASes. CDNs need to deploy widely in all types of ASes.
In particular, a CDN needs to deploy in both core and access
ASes to meet performance needs of all downstream end
users. Access ASes economically benefit from CDNs because
delivery of the content from a local CDN cache reduces the
transit traffic and thus transit expenses of the access AS.
Consequently, access ASes eagerly host CDN caches and even
incentivize their deployment, e.g., by not charging the CDN
for the cache colocation space and on-net traffic (i.e., the
CDN traffic that stays within the access AS). On the other
hand, CDN deployments in a core AS might decrease the
transit revenues of the AS and make it reluctant to offer any
kind of deployment incentives. For these reasons, planning
the cache deployment in access ASes is a simpler matter
and impacts only a smaller portion of the total deployment
cost. Consequently, our work focuses on optimizing CDN
deployments in the core of Internet where the problem is both
more complex and more expensive.

A. CaDeOp: cache deployment optimization

Our work is the first formal study of the cache deployment
optimization (CaDeOp) problem that is an important opera-
tional component of any real-life CDN. CaDeOp is an offline
planning problem where the CDN operator makes deployment
decisions on the time scale of months or quarters. The CaDeOp
objective is to minimize the deployment cost incurred by the
CDN, subject to meeting the end-user performance require-
ments. We call an AS where the CDN deploys its caches a
cache AS to differentiate such an AS from the ASes where
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the CDN has no cache deployments. The primary output of
CaDeOp is the set of cache ASes and the amount of server,
bandwidth, and energy resources that the CDN has to deploy
in each cache AS.

To optimize the deployment of a CDN, one must consider
the traffic of the end users and examine which ASes can satisfy
these end-user traffic needs with acceptable performance.
Therefore, CaDeOp also produces a tentative assignment of
end users to cache ASes. While these assignments are guide-
lines for which cache ASes can serve which users, the CDN
may choose to alter these assignments in real time when the
Internet performance [2] or cost characteristics [5], [6] change.
In this work, we do not consider the real-time aspects of
the CDN operation but rather focus on planning the CDN
deployment in the longer term. Another aspect worth noting is
that a CDN typically needs to optimize the cache deployment
incrementally because of already having a deployment and
needing to modify it to meet new traffic, performance, and
cost requirements. While CaDeOp takes the clean-slate ap-
proach of computing a full optimal deployment from scratch,
our CaDeOp problem formulation can be easily extended,
without affecting the solution methodology, to optimize the
incremental update of an existing deployment. Our subsequent
work will also examine a strategy of potentially sacrificing
the current optimality to enable updates that optimize the
deployment under expected future conditions.

In studying the CaDeOp problem, we strive for practical rel-
evance of our assumptions. Unlike previous cache-deployment
studies that assume a highly hypothetical network topology
such as a line or ring [7], we investigate CaDeOp in AS-
level Internet topologies derived from real measurements.
Using C-BGP [8], we compute realistic BGP (Border Gateway
Protocol) [9] paths from cache ASes to the other ASes in
these topologies. We model the traffic demands of the end
users by adopting a realistic Zipf distribution seeded with data
from Akamai Technologies. To evaluate the sensitivity of the
results to parameter settings, we consider 3 topologies from
2 different sources as well as 2 opposing vectors of traffic
demands. We model the cost of the CDN as a combination of
bandwidth, energy, and server costs. While the server costs are
linear, we realistically represent bandwidth and energy costs
as non-linear functions. In particular, we consider bandwidth-
cost functions that are sensitive to the geographic location and
configured according to data from TeleGeography [10].

B. Our contributions

This paper is the first to formulate and solve the CaDeOp
problem of optimizing multi-AS deployments of CDN caches
in the Internet core. Our work is of significant practical
relevance since it formalizes the planning process that all
real-life CDN operators must follow to reduce the operational
cost of their overlay networks, while meeting the performance
requirements of their end users.

We evaluate our CaDeOp solutions in realistic settings,
examine the sensitivity of the results to our parametric as-
sumptions, and reach the following main conclusions:

Notation Semantics

G AS-level topology of the Internet core
N set of ASes in G

Tj traffic demand of the end users in AS j

H set of cache ASes
Ii bit indicating whether AS i ∈ H

Di,j AS-hop distance from cache AS i to AS j

mij fraction of Tj satisfied by cache AS i

Vi overall traffic of cache AS i

Fi on-net traffic of cache AS i

Ji off-net traffic of cache AS i

d performance constraint
Si server cost of cache AS i

Ei energy cost of cache AS i

Bi bandwidth cost of cache AS i

a, e, bi cost-function factors
h, g cost-function exponents
C CDN cost

TABLE I: Notation in the CaDeOp problem formulation.

1) When the end-user performance requirements become
more stringent, the CDN footprint expands rapidly,
requiring cache deployments in additional ASes and
geographical regions.

2) With higher performance requirements, the CDN cost
also rises by several times. While the server costs remain
about the same, the costs of energy and bandwidth
grow because the CDN loses some of the economies
of scale in procuring these resources. Consequently,
the cost balance in CDNs with higher performance
shifts toward bandwidth and energy costs. As the end-
user performance requirements become more and more
stringent over time, our work suggests that adoption of
schemes for energy-usage reduction [5] and bandwidth
optimization [11] will become even more important for
CDNs of the future.

3) The traffic distribution among the cache ASes stays
relatively even, with the top 20% of the cache ASes
serving around 30% of the overall CDN traffic. It is
notable that the Pareto principle, which applies in many
related domains, does not apply to CDN deployments, in
part due to the highly distributed nature of the Internet
traffic [2].

The rest of this paper has the following structure. Section II
formulates the CaDeOp problem. Section III presents our
solution methodology. Section IV reports the results. Section V
discusses related work. Section VI sums up our paper.

II. FORMULATING THE CADEOP PROBLEM

We model the Internet core as a connected directed graph G

where the nodes denote ASes and form set N . The graph edges
represent inter-AS economic relationships annotated as transit
or peering.



Internet core topology ASes Transit links Peering links Maximum node degree Diameter Average AS-hop distance

UCLA 320 1308 3535 167 16 2.69
CAIDA1 302 1074 3345 167 9 2.54
CAIDA2 490 1726 5335 253 10 2.69

TABLE II: Statistical properties of the considered Internet core topologies.

In the given model, cache ASes refer to the ASes where the
CDN deploys caches. One of the CaDeOp goals is to identify
set H of the cache ASes. Bit Ii identifies whether AS i is a
cache AS: Ii = 1 for AS i ∈ H , and Ii = 0 for AS i �∈ H .

Any AS can have end users of the CDN. Measured in Mbps,
traffic demand Tj denotes the overall rate of the content traffic
from the CDN caches to the end users in AS j. To satisfy the
traffic demands, the cache ASes transmit the content traffic
along the paths computed according to the BGP protocol.
Distance Di,j represents the number of hops on the AS-level
path from cache AS i to AS j.

Traffic split mi,j is another CaDeOp output and denotes
the fraction of traffic demand Tj satisfied by cache AS i. The
traffic splits are subject to the following constraints:

0 ≤ mi,j ≤ Ii ∀i ∈ N, ∀j ∈ N, (1)
�

i∈H

mi,j = 1 ∀j ∈ N. (2)

Inequalities 1 imply that only the cache ASes serve the
content, i.e., mi,j = 0 if AS i �∈ H . Equalities 2 ensure that
the cache ASes fully satisfy the traffic demand of each AS j.

With the traffic splits determined, we establish the overall
rate Vi of the content traffic transmitted by each cache AS i:

Vi =
�

j∈N

(mi,j · Tj) . (3)

Some of this traffic might be on-net, i.e., sent to local end
users. The rate of the on-net traffic for cache AS i can be
determined as Fi = mi,i · Ti. Then, the rate of the off-net
traffic (i.e., the overall traffic from AS i to the other ASes) is
Ji = Vi − Fi.

To characterize the delivery quality provided by the CDN to
the end users, the CaDeOp model incorporates the following
performance constraint d:

�
j∈N

(Di,j ·mi,j · Tj)

Vi

≤ d ∀i ∈ H (4)

where the hop distance from cache AS i to AS j is weighed
with the fraction of the Vi traffic that the cache AS sends
along the delivery path. This metric reflects the delay in
AS hops acceptable for the end users. For example, d = 0
requires delivery from a cache in the same AS. Meeting the
d = 1 constraint corresponds, on average, to delivery from an
adjacent cache AS.

To operate each cache AS i, the CDN incurs server cost Si,
energy cost Ei, and bandwidth cost Bi. These costs are
computed as

Si = a · Vi, Ei = e · V h

i
, and Bi = bi · V g

i
(5)

Centrality type UCLA CAIDA1 CAIDA2

large-cone ASes 15 12 15
medium-cone ASes 30 5 11
small-cone ASes 167 74 99
tiny-cone ASes 108 211 365

TABLE III: Split of the ASes according to their centrality in the
UCLA, CAIDA1, and CAIDA2 topologies.

where a, e, and bi are positive constant factors, and h and
g are constant exponents with values between 0 and 1. The
non-linear Ei and Bi functions capture the economies of
scale in energy and bandwidth consumption [12]–[14]. While
pricing may vary with geography, we model such variations
for bandwidth pricing only, by allowing different cache ASes i
to differ in their factors bi (factors e and a are fixed for all
ASes).

We use C to denote the CDN cost that combines the
individual costs of the CDN in all cache ASes:

C =
�

i∈H

(Si + Ei +Bi) . (6)

The objective in CaDeOp is to minimize C. With all the
notation summarized in table I, we formulate the CaDeOp
problem as follows:

• Inputs: topology G, AS-level paths in G, traffic-demand
vector T , cost-function parameters a, e, bi, h, g, and
performance constraint d;

• Objective: minimize CDN cost C;
• Constraints: equalities 2 and inequalities 1 and 4;
• Outputs: set H of cache ASes, traffic-split matrix m,

overall-traffic vector V , on-net traffic vector F , off-
net traffic vector J , server-cost vector S, energy-cost
vector E, bandwidth-cost vector B, and CDN cost C.

III. SOLUTION METHODOLOGY

A. Approximation of non-linear costs

While the energy and bandwidth costs in the formulated
CaDeOp problem are non-linear, we apply the classical convex
combination method [15], which uses special ordered sets of
type 2 (SOS2), to approximate these costs with piecewise-
linear functions. The approximating functions employ between
6 and 8 linear segments.

B. Solving the CaDeOp problem

With the energy and bandwidth costs transformed to
piecewise-linear, CaDeOp becomes a MIP (Mixed Integer
Programming) problem. We express the MIP problem in
AMPL [16] and solve it in Gurobi Optimizer 5.0, a commercial
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(c) CAIDA2 topology

Fig. 1: Approximation error for the energy and bandwidth costs with traffic-demand vector T1 and location-oblivious bandwidth pricing.

optimization solver [17], with the maximum optimality gap
of 5%.

C. Parameter settings

1) Topology: We solve the CaDeOp problem for the Inter-
net core. Our iterative algorithm, which detects and resolves
customer-provider cycles, extracts an Internet core topology
from an Internet-wide AS-level topology by peeling off the
current edge ASes, i.e., ASes that do not provide transit for
another AS in the current topology. We apply the extraction
algorithm to the Internet-wide topologies from UCLA [18] and
CAIDA [19] to derive 3 Internet core topologies, to which we
refer as UCLA, CAIDA1, and CAIDA2 through the rest of this
paper. Table II reports statistical properties of these Internet
core topologies.

To understand the structure of the Internet core topologies,
we classify the ASes according to their centrality defined
with respect to their customer cone. The customer cone of
an AS consists of ASes that are either direct or indirect transit
customers of that AS in the core topology, i.e., those ASes
reachable from the AS through a sequence of provider-to-
customer transit links [20]. We consider 4 centrality classes:
large cone, medium cone, small cone, and tiny cone. The
customer cone of a tiny-cone AS contains at most 5 ASes.
Note that the centrality classification is for the Internet core
topology only and that even a tiny-cone AS without a customer
AS in the core topology can have many customer ASes in the
original Internet-wide AS-level topology. The customer cone
of a small-cone AS includes between 6 and 50 ASes. Medium-
cone ASes have at least 51 ASes in their customer cones.
We create the large-cone category by extracting from the
medium-cone categories those ASes that are tier-1 according
to Wikipedia [21], [22] (3 of such ASes are not in the large-
cone or medium-cone categories for the CAIDA1 topology).
Table III shows the split of the ASes according to their
centrality in the Internet core topologies.

2) AS-level paths: AS-level paths in the Internet core
topology constitute another input for the CaDeOp problem.
We use the C-BGP tool [8] to compute realistic AS-level paths
in the UCLA, CAIDA1, and CAIDA2 topologies.

3) Traffic demands: To set the traffic demands of ASes,
we utilize data from Akamai caches in Indiana, California,

Sweden, and Switzerland. The datasets report average monthly
rates of content traffic served by the caches. We scale up the
actual traffic rates of these Akamai caches to estimate the
overall monthly traffic demand for all ASes in the Internet
core topology. It is worth noting that, with our focus on
optimizing CDN deployments in the Internet core, we do not
consider access ASes and their traffic demands. We distribute
the overall core demand between the individual core ASes
by assigning traffic-demand rates to the ASes according to
the Zipf distribution [23], [24] where the maximum traffic
demand of an AS and skew parameter are set to 5 Gbps
and 0.8 respectively. While we do not have access to data
for the content consumption by specific ASes, we consider
2 opposing assignments of the traffic-demand shares to in-
dividual core ASes: (T1) Traffic-demand vector T1 sets the
traffic-demand shares of ASes in the order of the node de-
grees of the ASes; this traffic allocation roughly corresponds
to the centrality classification of the ASes in the Internet
core topology and places larger traffic demands toward the
topological center; (T2) Traffic-demand vector T2 assigns the
traffic-demand shares to the ASes in the reverse order and
allocates larger traffic demands at the edges of the Internet core
topology. While the Zipf profile of the traffic-share distribution
is realistic [23], [24], extremes T1 and T2 of the broad traffic-
demand vector range enable us to evaluate the sensitivity of
the results to traffic demands.

4) Cost functions: Based on data from public sources and
TeleGeography [10], our default parameter settings for the
server, energy, and bandwidth cost functions are as follows:
a = 0.88, e = 20, bi = 70, h = g = 0.75 (all measurement
units are such that expressions 5 compute monthly costs
in U.S. dollars). We also evaluate location-aware bandwidth
pricing where the value of bi depends on the geographical
region of AS i. Again guided by the TeleGeography data, we
set the location-aware bi value to 51, 71, 215, 264, and 270
for Europe, North America, Asia-Pacific, South America, and
Oceania respectively.

IV. EVALUATION RESULTS

A. Accuracy of approximating the non-linear costs

While our method for solving the CaDeOp problem ap-
proximates the non-linear energy and bandwidth costs with



 1

 10

 100

0.1 0.4 0.8 1.2 1.6 2

N
u
m

b
e
r 

o
f 

c
a
c
h
e
 A

S
e
s

Performance constraint

loc-oblivious T1

loc-oblivious T2

loc-aware T1

loc-aware T2

(a) UCLA

 1

 10

 100

0.1 0.4 0.8 1.2 1.6 2

N
u
m

b
e
r 

o
f 

c
a
c
h
e
 A

S
e
s

Performance constraint

loc-oblivious T1

loc-oblivious T2

loc-aware T1

loc-aware T2

(b) CAIDA1

 1

 10

 100

0.1 0.4 0.8 1.2 1.6 2

N
u
m

b
e
r 

o
f 

c
a
c
h
e
 A

S
e
s

Performance constraint

loc-oblivious T1

loc-aware T1

(c) CAIDA2

Fig. 2: Trade-offs between the CDN footprint and performance in the UCLA, CAIDA1, and CAIDA2 topologies.
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Fig. 3: Split of the cache ASes according to their centrality when the bandwidth pricing is location-oblivious.

piecewise-linear functions, we quantify how accurately the
piecewise-linear functions represent the non-linear costs for
each cache AS. Keeping the approximation accuracy high is
important in order to avoid error cascades and preserve the
high precision in the problem solutions [25]. Figure 1 plots
the approximation error for the energy and bandwidth costs of
every cache AS with traffic-demand vector T1 and location-
oblivious pricing.

For the UCLA topology, figure 1a shows that the error is
less than 4% for all but one cache AS when performance
constraint d is at most 0.8. The error stays at 0.6% when
d = 1.2. With d = 1.6 or d = 2, the approximation does
not introduce any error into the energy and bandwidth costs
of cache ASes. For the CAIDA topologies, the approximation
method provides the exact costs with d ≥ 1.2. With d ≤ 0.8,
figure 1c shows that the error consistently stays under 3% for
the CAIDA2 topology. For the CAIDA1 topology with d = 0.8
or d = 0.4, figure 1b shows the error values that are always
significantly below 1%. On the other hand, with d = 0.1, the
error stays under 3% for only 94% of the cache ASes and
grows to almost 15% over the remaining 6% of the cache
ASes. While the cost-approximation accuracy deteriorates for
some cache ASes in CAIDA1, we use UCLA as the baseline
topology in our evaluation.

B. Deployment footprint

We start evaluating our CaDeOp solutions by examining
how performance constraint d affects the footprint of the
optimal CDN deployment. Figure 2a plots the number of
cache ASes in the optimal deployment for both traffic-demand
vectors in the UCLA topology with location-oblivious and

location-aware bandwidth pricing. When the required delivery
quality is low, the optimal deployment involves only a few
cache ASes. For d = 2, a single-AS deployment provides
the required delivery quality and minimizes the CDN cost in
3 out of the 4 plotted settings (and 2 cache ASes are needed
in the 4th setting). When the performance constraint becomes
more stringent, the footprint of the optimal CDN deployment
consistently expands by employing more cache ASes. For
each of the 4 traffic/pricing settings, the footprint expansion
is roughly exponential in the number of cache ASes.

Assessing the sensitivity of the performance-footprint trade-
offs to the topology and traffic demands, figures 2a, 2b, and 2c
report similar trade-off profiles in the UCLA, CAIDA1, and
CAIDA2 topologies with traffic-demand vector T1. However,
the trade-off profiles with traffic-demand vector T2, which
shifts large traffic demands towards the edges of the topology,
are quite different: the optimal CDN deployment tends to
involve a larger number of cache ASes than with vector T1,
which places large traffic demands toward the topological
center. Hence, CaDeOp solutions are more sensitive to traffic
demands than topology.

To understand which ASes are chosen for the cache de-
ployment, we classify the cache ASes according to their
centrality types (as defined in section III-C1). Figure 3a plots
the distribution of the cache ASes as per their centrality with
traffic-demand vector T1 and location-oblivious bandwidth
pricing. For d = 2 or d = 1.6, the only cache AS of
the optimal deployment belongs to the large-cone type, i.e.,
the center of the topology. When the performance constraint
tightens, the fraction of large-cone ASes in the CDN footprint
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steadily declines, and the CDN spreads its cache ASes through
the topology. For d = 0.1, the fractions of the large-cone,
medium-cone, small-cone, tiny-cone ASes in the optimal CDN
deployment are respectively 9%, 10%, 52%, 29% which
closely approach the corresponding 5%, 9%, 52%, 34% shares
of these AS types in the overall AS population of the UCLA
topology.

Figure 3b depicts counterpart results for traffic-demand
vector T2 and shows similar footprint-performance trade-offs:
while the optimal deployment with d = 2 consists of one
large-cone AS, the cache ASes spread through the topology
away from its center when the delivery quality requirements
become more stringent. With traffic-demand vector T2, the
fraction of large-cone ASes has a steeper decline, and the
optimal deployment shifts the cache ASes towards the edges
of the topology more aggressively, because this vector places
large traffic demands away from the topological center.

Switching the topology from UCLA to CAIDA2, figure 3c
shows the split of the cache ASes according to their centrality
type with traffic-demand vector T1 and location-oblivious
bandwidth pricing. When the performance constraint tightens
from 0.8 to 0.1, the footprint expansion is qualitatively the
same as in the UCLA topology: the CDN spreads its cache
ASes away from the topological center. On the other hand,
when the performance constraint is loose, the qualitative pic-
ture differs from the UCLA case: the CDN locates its consol-
idated footprint in tiny-cone or small-cone ASes of CAIDA2.

Turning our attention to the geography of the optimal CDN
deployment, figure 4 depicts the geographic profile of the
cache ASes for the UCLA topology, traffic-demand vector T1,
and location-oblivious pricing. For d = 2 or d = 1.6, the only
cache AS of the optimal footprint is based in North America.
When the delivery quality requirements become stricter, the
optimal footprint expands first to Europe, then to Asia-Pacific,
and eventually to South America. This geographic perspective
confirms the more general observation that content delivery
at a high quality necessitates an extensive CDN footprint
throughout the topology.

The above evaluation can be summed up as follows: When

the delivery-quality needs become more stringent, the CDN

footprint expands rapidly, requiring cache deployments in

additional ASes and geographical regions.
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C. Traffic patterns

We now examine how the optimal footprint satisfies the
traffic demands of end users. Figure 5 depicts overall-traffic
vector V , in the decreasing order of the Vi values, for dif-
ferent delivery-quality needs with the UCLA topology, traffic-
demand vector T1, and location-oblivious pricing. For d = 0.8
when the optimal footprint involves 22 cache ASes, the overall
traffic is spread among the cache ASes quite uniformly, with
the exception of a few cache ASes that have the lowest load.
In the 3 plotted distributions for the performance constraints
between 0.8 and 0.1, the top 20% of the cache ASes serve
around 30% of the overall traffic, and the top 50% of the
cache ASes serve around 65% of the overall traffic. Hence,
the distribution of the overall traffic among cache ASes stays
relatively even.

Figure 6 maps served ASes to cache ASes. With d = 0.8,
figure 6a shows that the individual cache ASes serve between
31 and 8 ASes each. With d = 0.4 and d = 0.1, the
maximum number of ASes served by the same cache AS
reduces to 11 and 6 respectively, while the minimum number
is 2 ASes which include the cache AS itself. Figure 6b shows
that most of ASes receive content from only one cache AS.
With d = 0.1, only 29% of all ASes are served by multiple
cache ASes, and the maximum number of cache ASes serving
the same AS is 8. For the looser performance constraints, the
fraction of ASes served by multiple cache ASes shrinks even
further. Focusing on the ASes served by multiple cache ASes,
figure 6c plots the cumulative distribution of positive traffic
splits mij and reveals that the traffic splits are spread relatively
smoothly between 1 and 0. Thus, tightening the performance
constraint decreases the fraction of ASes served by multiple
cache ASes but the traffic of such served ASes remains
distributed smoothly among their multiple cache ASes.

To expose the traffic patterns in more detail, figure 7
presents scatter plots of the on-net vs. off-net traffic of the
cache ASes. When the performance constraint becomes more
stringent and increases the number of cache ASes, the off-
net traffic of individual cache ASes expectedly decreases.
Figure 7 also reveals that the off-net traffic of a cache AS is
bounded from above by a linear function of the on-net traffic
with a slope of d/(1 − d). The bound is a consequence of
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Fig. 6: Mapping of served ASes to cache ASes for the UCLA topology, traffic-demand vector T1, and location-oblivious pricing.
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Fig. 7: Scatter plots of the on-net vs. off-net traffic of the cache ASes for the UCLA topology, traffic-demand vector T1, and location-oblivious
bandwidth pricing.

inequalities 4 because serving the off-net traffic of a cache AS
at a rate that is larger than d/(1− d) times the on-net traffic
rate would violate the performance constraint. Perhaps more
surprising is that a large number of points coincide with the
linear bound. This happens when the performance constraint
is dominant, and inequalities 4 are satisfied with equalities for
many cache ASes in the optimal deployment. Each of these
cache ASes serves the off-net traffic at the maximum rate that
does not violate the performance constraint.

For the UCLA topology, traffic-demand vector T1, and
location-oblivious bandwidth pricing, figures 3a and 8 com-
pare the cache ASes and their overall traffic. The comparison
shows that the cache ASes and overall traffic have qualitatively
similar distributions when split according to the centrality type
of the cache ASes.

In the above examination of CDN traffic patterns, we can
highlight the following observations: The traffic distribution

among the cache ASes stays relatively even, with the top 20%

of the cache ASes serving around 30% of the overall traffic.

For a large fraction of the cache ASes, the off-net traffic is

proportional to the on-net traffic of the AS.

D. CDN cost

While the above evaluation focuses on the CDN footprint
and traffic patterns, we now examine the cost of the optimal
deployment. Figure 9 plots the normalized CDN cost in the
UCLA, CAIDA1, and CAIDA2 topologies. The normalization
is done with respect to the CDN cost with no constraint on
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the performance, i.e., when the optimal deployment involves
only one cache AS. The plot shows that tightening the per-
formance constraint increases not only footprint but also cost.
For d = 0.1, the CDN cost is several times larger than in the
baseline single-AS deployment.

We now examine how the CDN cost depends on the aware-
ness of location-specific bandwidth prices. For the UCLA
topology and traffic-demand vector T1, figures 10a and 10b
depict the geographic distributions of the CDN cost with
location-oblivious and location-aware bandwidth prices re-
spectively. When the performance constraint is loose, the
awareness shifts the entire deployment from North America
to Europe due to the lower prices in the latter. When d

tightens, the geographic distribution of the CDN cost involves
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Fig. 9: Trade-offs between the CDN cost and performance in the UCLA, CAIDA1, and CAIDA2 topologies.
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Fig. 10: The CDN cost for the UCLA topology with location-oblivious vs. location-aware bandwidth pricing.

additional regions and converges to similar regional splits
for both pricing models because the caches in the expanding
footprint are deployed closer to the end users. Nevertheless,
the location-specific pricing affects the CDN cost even with
tight performance constraints. For traffic-demand vectors T1
and T2, figure 10c shows that the ratio of the CDN costs
with location-oblivious and location-aware prices varies from
1.2 (with d = 2 and T1) to 0.7 (with d = 0.1 and T2). For
tighter d values, the oblivious/aware ratio of the CDN costs
consistently diminishes because the CDN deploys caches in
new geographical regions that have higher prices. Hence, the
awareness of location-specific prices has profound effects.

Figure 11 tracks the split of the CDN cost among the
bandwidth, energy, and server categories. When the delivery-
quality requirements become more stringent and expand the
footprint with new cache ASes, the CDN ability to benefit
from the economies of scale in energy and bandwidth costs
diminishes, and the fractions of these costs in the CDN cost
increase. On the other hand, while the server costs do not
change, the relative share of the server costs in the increasing
CDN cost declines. Thus, when the performance constraint
tightens, the cost balance shifts toward the bandwidth and
energy costs.

The following are the main insights from this last portion of
our evaluation: When the delivery-quality requirements become

more stringent, the CDN cost rises several times, and the cost

balance shifts toward bandwidth and energy costs.

V. RELATED WORK

Cache placement has been studied in models that do not
account for the economic structure of the Internet [7], [26],
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[27]. Because the economic considerations are crucial for
CDN planning, our paper goes beyond the single-network
perspective and examines cache deployment in realistic AS-
level Internet topologies.

Complementary to the planning problem of CaDeOp that
we study in this paper, there is much prior work on the real-
time operations of the CDN in areas such as dynamic content
management and load balancing [5], [26]–[30].

There exists recent work on data-center placement and
upgrade [31], [32]. The data-center optimizations are based on
physical resources, e.g., water, energy, and land. While CDN
caches are deployed in data centers, the performance and cost
considerations for deploying CDNs are drastically different
from those relevant for data-center operators.

The problem of optimizing the set of upstream ASes for a
multihomed network [33] has similarities with the CaDeOp



subproblem of choosing the set of cache ASes. However,
CDN specifics necessitate a different formulation and solution
methodology for CaDeOp.

Optimization techniques have been used to study telco
CDNs and IXP-colocated CDNs [34], [35]. However, there
is no prior study of multi-AS deployment optimization with
realistic cost and performance constraints, such as the ones
examined in our paper.

Reducing the energy cost of a CDN has been a focus
in earlier work [6], [36]. Our investigation takes a more
comprehensive view by considering all major sources of the
CDN cost, including energy, bandwidth, and server costs, in
the joint CaDeOp problem.

VI. CONCLUSION

This paper is the first to formulate and solve the CaDeOp
(Cache Deployment Optimization) problem of determining an
optimal set of cache ASes in the Internet core and provisioning
server, energy, and bandwidth resources in each cache AS.
CaDeOp strives to minimize the CDN cost while satisfying
the end-user performance requirements. Our evaluation of the
CaDeOp solutions exposed trade-offs in CDN deployment for
realistic AS-level topologies, Internet routing, traffic demands,
and non-linear costs for energy and bandwidth. We also
evaluated the sensitivity of the conclusions to our parametric
assumptions. When the delivery-quality needs become more
stringent, the CDN footprint expands rapidly, requiring cache
deployments in additional ASes and geographical regions.
Also, the CDN cost increases several times, with the cost
balance shifting toward bandwidth and energy costs. On the
other hand, the traffic distribution among the cache ASes stays
relatively even, with the top 20% of the cache ASes serving
around 30% of the overall traffic.
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