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Abstract

Active learning provides useful tools to reduce anno-
tation costs without compromising classifier performance.
However it traditionally views the supervisor simply as
a labeling machine. Recently a new interactive learning
paradigm was introduced that allows the supervisor to ad-
ditionally convey useful domain knowledge using attributes.
The learner first conveys its belief about an actively chosen
image e.g. “I think this is a forest, what do you think?”. If
the learner is wrong, the supervisor provides an explanation
e.g. “No, this is too open to be a forest”. With access to a
pre-trained set of relative attribute predictors, the learner
fetches all unlabeled images more open than the query im-
age, and uses them as negative examples of forests to up-
date its classifier. This rich human-machine communication
leads to better classification performance. In this work, we
propose three improvements over this set-up. First, we in-
corporate a weighting scheme that instead of making a hard
decision reasons about the likelihood of an image being a
negative example. Second, we do away with pre-trained at-
tributes and instead learn the attribute models on the fly,
alleviating overhead and restrictions of a pre-determined
attribute vocabulary. Finally, we propose an active learn-
ing framework that accounts for not just the label- but also
the attributes-based feedback while selecting the next query
image. We demonstrate significant improvement in classi-
fication accuracy on faces and shoes. We also collect and
make available the largest relative attributes dataset con-
taining 29 attributes of faces from 60 categories.

1. Introduction

Image classification is one of the core tasks in visual
recognition, with many generic applications such as image
search [25], as well as niche applications such as recog-
nizing bird [3], animal [14] or leaf [12] species from im-
ages. These applications often involve a large number of
classes. Learning based methods have achieved a lot of suc-
cess at these tasks, but typically require a large amount of
labeled training data. Collecting labels for images is tedious

and expensive especially in large-scale niche applications,
which has led to increasing interest in active learning meth-
ods [2, 7, 9, 11, 18, 20, 21]. These methods aim to solicit
labels from the supervisor on a small but useful set of im-
ages, leading to classification performance similar to that of
having labeled a larger but random set of images.

However, most existing active learning settings still view
the supervisor as an entity to simply get labels from. The
supervisor often has much more domain knowledge about
an application at hand than just the label, that if commu-
nicated to the learner, may allow the learner to learn from
even fewer examples. Parkash and Parikh [17] proposed
the use of attributes to enable such communication. At-
tributes [1, 3, 4, 6, 11, 13–16, 19, 22–24] are mid-level
semantic concepts such as “furry”, “natural”, etc. that are
shared across related categories. In their work [17], at each
iteration in active learning, the learner identifies an image
that it would like labeled. However instead of simply de-
manding the label for the image, the learner first determines
its current belief about the image, and conveys it to the su-
pervisor. For instance the learner says, “I think this is a for-
est, what do you think?”. If the learner is wrong, the super-
visor identifies a reason that conveys to the learner why it is
wrong. The supervisor may say “No, this is not a forest im-
age, because it is too open to be a forest image”. The learner
is assumed to have access to a set of pre-trained relative at-
tribute [16] predictors. In this case, it uses the “openness”
attribute model to find all images from an unlabeled pool
that are even more open than the selected query image, and
assumes that those must not be forests either. This provides
the learner with many more (negative) examples of forest
which it uses to update its classifier. Such a rich communi-
cation between the supervisor and the learner was shown to
lead to faster learning with fewer labeled examples [17]. In
this paper, we improve upon [17] in several ways.

First (Section 3.1), instead of simply assuming that all
images in the above example more open than the query im-
age are not forests, we intelligently estimate the likelihood
of the images not being a forest. This allows us to be ro-
bust to potential inaccuracies in the attribute predictors. Im-
ages that are significantly more open than the query image
are more likely to not be forests than images that are barely
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more open. Moreover, if an image is deemed to not be a for-
est due to several reasons provided by the supervisor across
the active learning iterations, this increases our confidence
in it not being a forest. We show that a simple weighting
scheme that accounts for these intuitions significantly im-
proves performance.

Second (Section 3.2), instead of requiring the learner to
have access to a pre-trained set of relative attribute mod-
els, we allow the learner to learn the attribute models on
the fly, simultaneously with the category models. Requir-
ing access to a domain relevant vocabulary of attributes
and corresponding attribute models is very restrictive and
can be time consuming to acquire. Instead, we leverage
the following observation: when the supervisor says “This
query image is too open to be a forest”, it not only con-
veys information about forests, but it also conveys informa-
tion about the notion of openness. If in previous (or future)
iterations the learner has already collected a few example
forest images, this feedback from the supervisor indicates
that those images must be less open than the query image.
This information can be used to build or update the open-
ness attribute model. This allows the supervisor to introduce
new attributes as and when necessary without being con-
strained by a pre-determined vocabulary. It also alleviates
the need to collect training data to train a pre-determined set
of attributes. The learner and supervisor start with nothing
but an unlabeled pool of images, and learn both the cat-
egories and attribute models from scratch. This reduced
overhead and unconstrained setting truly makes the pro-
posed approach easily and widely accessible.

Finally (Section 3.3), we propose a novel active learning
framework that selects the most useful image at each itera-
tion, keeping in mind the specific form of learner-supervisor
interaction our setup allows. The attributes-based feedback
provided by the supervisor is propagated to many unlabeled
images by the learner. Our estimate of the reduction in en-
tropy of the system when a query image is selected accounts
for this propagation and results in more efficient learning.

We demonstrate our approach on two domains: faces1

and shoes. In both cases, we assume that if the learner is
correct about its belief about a query image, the supervisor
can confirm this. But if the learner is incorrect, the super-
visor can indicate that and provide an explanation, but can
not identify the correct label of the image. This is relevant
in various scenarios like face recognition for surveillance
or niche applications like bird [3], animal [14] or leaf [12]
species recognition that require expert knowledge. The su-
pervisor can look at example images of the claimed cate-
gory and easily verify if the claim is correct or not. But the
supervisor may not have the time to navigate through a long
list of categories, nor have the expertise to do so. Attributes

1As part of our experimental setup, we collected and have made
publicly available annotations for 29 relative attributes on 60 celebrity
faces [13], the largest relative attributes dataset to date.

on the other hand may not require as much expert knowl-
edge. For instance, say the learner incorrectly claims a
teenager in a surveillance video is Kirabo Smith, and shows
previously labeled example images of Kirabo Smith. The
supervisor can see from the examples that Kirabo Smith is
actually a senior citizen. The supervisor may not know who
the person in the video is, but can easily say that the person
is too young to be Kirabo Smith.

Most relevant to our work is that of Parkash and
Parikh [17]. They introduced the notion of using attributes
for providing classifiers feedback. Authors provided a great
overview of its relationships to existing trends in computer
vision. We do not replicate that discussion here for space
considerations. Our work innovates over theirs in three
significant ways as described above. We now provide an
overview of the use of attributes for classifier feedback as
in [17] and then describe our proposed approach.

2. Preliminaries

A supervisor is teaching a machine visual concepts. As
learning aid, there is a pool of unlabeled images that the su-
pervisor will label over the course of the learning process
for the learner to learn from. At each iteration, the learner
picks an image from the unlabeled pool that it finds would
be most useful to have labeled. It communicates its own be-
lief to the supervisor in the form of a predicted label for this
image. The supervisor either confirms or rejects this label.
If rejected, the supervisor communicates an explanation us-
ing attributes for why the learner’s belief was wrong. The
learner incorporates both the label-feedback (whether ac-
cepted or rejected) and the attributes-based explanation (if
rejected) to update its models. And the process continues.

A binary classifier hk(x), k ∈ {1 . . .K} is trained for
each of the K categories to be learnt. At any point during
the learning process, there is an unlabeled pool of images
U and a training set Tk = {(xk, yk)} of labeled images
for each classifier. The labeled images xk can lie in any
feature space. The class labels are binary yk ∈ {+1,−1}.
In our implementation we use linear SVMs as the binary
classifier with probability estimates as output. These prob-
ability estimates are normalized across the K classifiers to
compute pk(xi), the probability that image xi belongs to
class k. The image with the highest entropy of the class dis-
tribution pk is chosen to be the query image xq . We will
describe our novel criterion for picking the query image in
Section 3.3. We initialize the system with one labeled ex-
ample from each class. Note that a new class can be added
to the system at any time in the learning process simply by
providing one positive labeled example.

There are two parts to the supervisor’s response to the
query image. The first is label-based feedback where the
supervisor confirms or rejects the learners predicted label
for the actively chosen image instance xq . And the sec-



ond is an attributes-based explanation that is provided if the
learners predicted label was incorrect and thus rejected. We
now discuss how the attributes-based feedback is incorpo-
rated given that the learner has access to a set of attribute
predictors. We will describe our approach of learning these
models on the fly in Section 3.2.

2.1. Incorporating Attribute-based Explanation

Let’s say the learner incorrectly predicts the label of ac-
tively chosen image xq to be l. The supervisor identifies
an attribute am that he thinks is most appropriate to explain
to the learner why xq does not belong to l. There are two
simple forms of explanation. The supervisor can either say
“xq is too am to be l” or “xq is not am enough to be l”,
whichever be the case.

In the former case, the learner computes the strength of
am in xq as rm(xq), where rm is a attribute strength pre-
dictor for attribute am (Section 2.2). The learner identifies
all images in the currently unlabeled pool of images U with
attribute strength of am more than rm(xq). Clearly, if xq

is too am to be l, all images depicting a higher strength
of am should not be l either. Hence the training data for
class l (Tl) is updated to be T̂l = Tl ∪ {(x,−1)} ∀x ∈
U s.t. rm(x) ≥ rm(xq). Similarly, for the latter form of
feedback, T̂l = Tl ∪ {(x,−1)} ∀x ∈ U s.t. rm(x) ≤
rm(xq). The category-label information is thus propagated
to other images in U aside from just xq . We will describe
our novel weighting scheme in Section 3.1 that softens this
propagation.

2.2. Attribute Predictors

The feedback provided by the supervisor relates the
query image actively selected by the learner to the category
the learner believes the query image is from. Hence relative
attributes [16] are a natural choice. We now describe how
these relative attribute predictors are trained offline. We will
describe our approach to learning these attribute models on
the fly in Section 3.2.

Suppose we have a vocabulary of M attributes A =
{am}. These attribute models are learnt using a set of train-
ing images I = {i} represented in Rn by feature-vectors
{xi}. For each attribute, we are given as supervision a
set of ordered pairs of images Om = {(xi,xj)} such that
(xi,xj) ∈ Om =⇒ xi � xj , i.e. image i has a stronger
presence of attribute am than j. We wish to learn a ranking
function rm(xi) = wT

mxi for m = 1, . . . ,M , such that the
maximum number of the following constraints is satisfied:
∀(xi,xj) ∈ Om,wT

mxi > wT
mxj . A relaxed version of

this NP hard problem is solved using a large margin learn-
ing to rank formulation similar to that of Joachims [8]. With
this, given any image x in our pool of unlabeled images U ,
we can compute the relative strength of each of the M at-
tributes as rm(x) = wT

mx.

2.3. Incorporating Label-based Feedback
As described earlier, we consider a scenario where the

supervisor can verify if the classifier’s prediction of xq is
correct or not. But when incorrect, it would be very time
consuming for or beyond the expertise of the supervisor to
seek out the correct category label to provide as feedback.
Hence the supervisor only confirms or rejects the prediction,
and does not provide a correction if rejecting it. While our
approach is general, in our implementation we assume that
each image belongs to exactly one category. Hence, if the
classifier’s prediction l is confirmed we have T̂l = Tl ∪
{(xq,+1)}, and T̂n = Tn ∪ {(xq,−1)} ∀ n 6= l. However,
if the classifier’s prediction is rejected, we only have T̂l =
Tl ∪ {(xq,−1)}.

3. Proposed Approach
We now describe our proposed approach that improves

upon the set-up presented in the previous section.

3.1. Weighting Scheme for Negative Examples
As described above, Parkash and Parikh [17] use the

attributes-based feedback to fetch unlabeled images and add
them as negative examples, all with the same weight. How-
ever, not all images are equally likely to be negative. In our
running example, if the query image is too open to be a for-
est, images that are significantly more open than the query
image are more likely to not be forests than images that are
barely more open than the query image. Also, as iterations
go by, if the same image is deemed to not be a forest due
to several reasons provided by the supervisor on different
query images, we should be more confident of the image
not being a forest. If one query is too open to be a forest
and another future query is not natural enough to be a for-
est, an image that is both more open than the first query and
less natural than the second is more likely to not be a forest
than an image that is more open than the first query but also
more natural than the second. We develop a straightforward
weighting scheme that accounts for these intuitions.

Let wl
Q(x) capture the likelihood at iteration Q that any

unlabeled image x does not belong to class l. It is com-
puted using attributes-based feedback accumulated over all
past iterations (indexed by q) where the classifier incorrectly
predicted the label of the corresponding query image xq to
be l. Without loss of generality, we will assume that for each
of these iterations, the supervisor gave the explanation: “xq

is too amq to be l”. Notice that the attribute selection may
have been different at each iteration, indexed by mq . Then

wl
Q(x) =

Q∑
q=1

nq(x) (1)

where nq(x) is 0 if:
• l was not the predicted label for xq at iteration q OR



• l was the predicted label but correctly so (i.e. no
attributes-based feedback was provided) OR

• x does not have more amq than xq i.e. rmq (x) <
rmq (xq)

otherwise nq(x) is the number of images that lie between
xq and x when all the images (labeled or unlabeled) are
sorted by rmq . If nq(x) is large, the weight correspond-
ing to x is high. nq(x) can also be defined to be the
difference in attribute scores between the two images i.e.
nq(x) = rmq (x) − rmq (xq). However, since the attribute
predictors are trained as ranking functions and not regres-
sors, the difference in scores may be less meaningful.2 At
each iteration, the weights wl

Q(x) for all images x in the
dataset are normalized to lie between 0 and 1 for each class
l. The weights of the images that have been labeled by the
supervisor via labeled-based feedback are always set to the
maximum, which is 1. The weights of these instances can
be fed into standard SVM solvers.

3.2. Learning Attribute Models On The Fly

We now describe our approach to learning the attribute
models on the fly as opposed to using pre-trained attribute
predictors as in [17]. Recall that an attribute predictor rm
for an attribute am is learnt by using human annotated pairs
of images Om = {(xi,xj)} such that (xi,xj) ∈ Om =⇒
xi � xj i.e. image xi displays a stronger presence of at-
tributes am than image xj . We use the following approach
to learn attribute predictors on the fly. At any iteration, if
the supervisor says “xq is too am to be l”, then the learner
fetches all images labeled as l, and appends Om with ad-
ditional constraints Ôm = Om ∪ {(xq,xj)} s.t. xj has
been labeled as l. For instance, if the supervisor says, “this
query image is too open to be a forest”, then the learner can
fetch all images thus far labeled as forests and realize that
all these forest images must be less open than the query im-
age. Similarly, if the supervisor says “xq is not am enough
to be l”, then Ôm = Om ∪ {(xj ,x

q)} s.t. xj is labeled
as l. We make some notes: 1) If an image in the future is
labeled by the supervisor to be forest, Om will be appended
accordingly. 2) As the attribute models are updated at each
iteration the weights described in Section 3.1 are recom-
puted using the updated attribute models. 3) The additional
constraints with which the existing ranker already agrees
are less likely to influence the updated ranker. Those that
are currently violated will play a critical role in its update.

Learning attributes on the fly gives the supervisor flex-
ibility to use whichever attribute he deems fit, and not be
severely restricted by a pre-determined vocabulary of at-
tributes. The supervisor can introduce a new attribute at

2When x is just a bit more open than xq and there are many images
similar to each other that all fall between x and xq , the difference in scores
may be more reliable. Empirically, using the difference in scores gives
similar but slightly worse results than using the number of images.

any time in the learning process. Our approach is gen-
eral and also allows access to a set of pre-trained attributes,
which can then be updated on the fly. Moreover, the form
of the attributes-feedback conveniently matches the super-
vision required by a learning to rank formulation to train
relative attribute models, allowing us to use it simultane-
ously as feedback for training classifiers and as annotation
for training relative attribute models.

3.3. Active Selection of Images

We now describe our novel active selection approach to
select the query image at a given iteration. The idea behind
active selection is to select an image such that the super-
visor’s response to it is likely to reduce the uncertainty or
entropy of the system the most. The traditional criterion of
picking the image with the most entropy of its class distri-
bution pk (also used in [17]) does not incorporate our rel-
ative attributes-based feedback setup. Our contribution is
to account for the feedback while efficiently computing the
expected reduction in entropy of the system when a query
image is labeled. The current entropy of the system is de-
fined to be:

H = −
N∑
i=1

K∑
k=1

pk(xi) log(pk(xi)) (2)

where pk(xi) is the probability of image xi belonging to
class k as estimated by the classifier hk and N is the number
of images in the currently unlabeled set U . When an image
xi is chosen to be the query image, there are two possible
responses from the supervisor. The first, with probability
p0 is to accept the label predicted by the classifier for xi

(i.e. xi gets labeled with its correct label). Let the resultant
entropy of the system be H0. The second, with probability
p1 = 1− p0 is to reject the label and provide an attributes-
based feedback. The latter has 2M options corresponding
to each of the M attributes and “too” or “not enough” rea-
sons. Let’s say given a rejection response, the chances of the
supervisor picking any of the M attributes with the “too” re-
sponse is p1+m and with the “not enough” response is p1−m .
Let the resultant entropy of the system be H1+

m and H1−
m

respectively. Hence, the expected change in entropy ∆H(i)
of the system when xi is selected as the query image is

H −

(
p0H0 + p1

(
M∑

m=1

p1+m H1+
m +

M∑
m=1

p1−m H1−
m

))
(3)

We wish to find xi with the largest value of ∆H(i). We
estimate p0, the probability that the classifier’s predicted
label l for xi is correct and hence accepted by the super-
visor to be pl(xi). As stated earlier, p1 = 1 − p0. To
estimate p1+m , the probability that the supervisor will pro-
vide feedback “xi is too am to be l”, we use the following
intuition. If the strength of am in xi is much larger than



its strength in all images labeled as l so far i.e. rm(xi) is
much larger than rm(xj) where xj are images labeled as
l, then p1+m will be high. More specifically, say we sort all
the images by their attribute values rm(x) in ascending or-
der. Say nm(x) denotes the rank of image x in the sorted
list and N l is the number of images labeled as l so far. If
xi falls very far to the right of all the images labeled as
l, ñ =

∑N l

j=1(nm(xi) − nm(xj)) will be a large positive
number, and p1+m is high. Similarly, if xi falls very far to
the left i.e. ñ is a large negative number, p1+m is small. And
if xi lies in the middle of the all the images labeled as l i.e.
ñ is close to 0, p1+m is moderate. Similar reasoning holds for
p1−m . Hence, we compute the 2M values corresponding to ñ
and their negatives, linearly shift them such that the smallest
value is 0, and then divide by the sum to get a distribution
over the 2M choices.

We now look at estimating the resultant entropies H0,
H1−

m and H1+
m in Equation 3. H0 is simply H reduced

by the entropy of xi which is −
∑K

k=1 pk(xi) log(pk(xi)),
because after being labeled as class l, its entropy is 0. Esti-
mating H1−

m and H1+
m is more interesting. When the label is

rejected, the supervisor provides attributes-based feedback,
which is transferred to many images as negative labels. If
the feedback is “xi is too am to be l”, then for all images
xi′ s.t. rm(xi′) > rm(xi), the corresponding class proba-
bilities pl(xi′) would be set to zero3, and their entropies can
be recomputed to determine the changed entropy. However,
note that when the supervisor provides this feedback, the
relative attribute model rm is also updated, and so the only
way to determine the set {xi′} s.t. rm(xi′) > rm(xi) is
to re-train rm. Notice that at each iteration, Equation 3 has
to be computed for all N unlabeled images in the dataset.
Hence, this brute-force approach would require us to train
2NM ranking functions at each iteration, which would be
prohibitively expensive for any reasonably sized dataset.

To reduce the computational burden, we propose an
approximate but faster approach for computing H1−

m and
H1+

m . Intuitively, instead of having to train 2NM ranking
functions, we simply train 2CM ranking functions, where
C << N , and is obtained by a meaningful clustering of
the N images. At a very high-level, this is similar to [5]
that clusters images for image retrieval to ensure a good
coverage of the entire feature space while simultaneously
improving efficiency. Our clustering relies on the following
intuition. Anytime the supervisor gives the learner feedback
of the form “xi is too am to be l”, the added constraints that
are obtained to update rm are of the form (xi � xj) s.t. xj

is labeled as l. Recall that some of these constraints may
be satisfied by the existing ranker, while others may be vi-
olated. The latter tend to have more impact on the ranker’s
update. Notice that all candidate query images xi that are
predicted by the classifier to be from class l and lie between

3Weights (Section 3.1) are ignored to simplify entropy computation.
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Figure 1: Our clustering approach for fast active learning.
Unlabeled images are clustered along each relative attribute
using boundaries marked by labeled images of each class.
A ranking function is trained for each cluster representative
instead of each unlabeled image.

two consecutively ranked labeled images xj will have the
same set of violated constraints, and will presumably lead to
similar updated ranking functions. Hence, instead of learn-
ing a new ranking function for all N images, we learn a
new ranking function only for each group of images that
are predicted by the classifier to be from the same class and
that fall between two consecutively ranked labeled images
of that class. See Figure 1. Each cluster is represented with
the median image along the attribute, and a new ranking
function is trained using that image instead of each candi-
date xi i.e. each unlabeled image. All images falling in the
same cluster thus share the same ranking functions to com-
pute H1−

m and H1+
m in Equation 3. In our experiments, we

find that as a result of our clustering based approximation,
we were required to train only 5− 7% of ranking functions,
while maintaining accuracy (see Figure 4b).

4. Experiments
We experiment with two different domains: faces and

shoes. For faces, we use two subsets of the Public Fig-
ures Face Dataset (PubFig) [13]: Pubfig-772-8 and Pubfig-
900-60. The first is the same as that used by Parkash and
Parikh [17] containing 772 images from 8 categories de-
scribed by 512-d gist concatenated with 30-d color his-
togram features. The second contains 900 images from 60
categories in the development set of PubFig. This is a sig-
nificantly more challenging dataset (not used in [17]), and
the simple gist and color features do not suffice. Instead,
we use the 73-d more sophisticated face features provided
by Kumar et al. [13] that capture various properties of the
faces and were found to provide state-of-the-art face veri-
fication performance. For shoes (Shoes-750-10) we use a
subset of 750 images from 10 classes of the shoes dataset of
Berg et al. [1] also used in [10]. As in [10], 960-d gist fea-
tures are concatenated with 30-d color histogram features.

4.1. Collecting Attributes-based Feedback

To allow for extensive quantitative evaluations while
still using feedback from real users, we collect exhaustive
attributes-based feedback offline using human subjects on
Amazon Mechanical Turk (MTurk) (as in [17]). Note that
the supervisor provides feedback every time a query image



is mis-classified, and this feedback depends on the query
image and the predicted label. This would require us to
collect (number-of-images × number-of-categories) num-
ber of feedback statements offline. To restrict the amount
of data to be collected, we make the simplifying assump-
tion that the feedback depends only on the true label of the
query image and the predicted label. This now requires us
to collect (number-of-categories × number-of-categories)
feedback statements.

To collect this data, we show 10 MTurk workers example
images from a pair of categories. We experiment with two
different interfaces. One is where workers are asked to de-
scribe in free-form text (using a word or a phrase), the most
obvious difference between the categories4. The second is
where workers are shown a list of attributes one at a time
and asked whether the first of the two categories has more
of the attribute, less of the attribute, or a similar presence as
the second.5 The attribute with most people agreeing on one
category having a stronger presence of the attribute than the
other (and fewest people saying the opposite) is the attribute
corresponding to the most obvious difference between the
two categories. Note that the list of attributes simulates the
vocabulary of attributes that the system would end up with
at the end of the learning process. In our experiments for
testing the system’s ability to learn the attributes on the fly,
the system does not have access to this list ahead of time.
To avoid language processing issues that arise when consol-
idating free-form text from multiple users, we use the latter
interface for most of our experiments. Towards the end we
show an experiment comparing the two interfaces. In a real
setting involving multiple supervisors, we envision a hybrid
of the two interfaces: if one of the supervisors introduces a
new attribute, it dynamically shows up on the list of avail-
able attributes for all supervisors to use. We note that our
attribute annotations for the PubFig-900-60 dataset is the
largest relative attribute dataset to the best of our knowledge
and is publicly available on our webpage.

4.2. Results
We split each of the three datasets into training and test-

ing sets. The training set (usually 65-75% of the total
dataset) is used as the unlabeled data that will be labeled
by the supervisor with label- and attributes-based feedback
over the course of the learning iterations. We evaluate
the classifiers every five iterations on the held-out test set.
We report average accuracies across 20 random train/test
splits. In Table 1 we list the various algorithms we eval-

4We assume that the supervisor is likely to comment on the attribute
that makes the predicted category of an image most different from its true
category, allowing us to simplify the question posed to MTurk workers.

5For PubFig-772-8 we used a list of the 11 attributes used in [16, 17]
and for PubFig-900-60 we used a list of 29 attributes capturing the same
concepts as those of Kumar et al. [13] such as age, gender, race, face-
shape, accessories and make-up, etc. For shoes, we used the 10 attributes
introduced by Kovashka et al. [10] such as colorful, formal, sporty, etc.

uated. The different comparisons allow us to evaluate the
role of attributes-based feedback, of the proposed weight-
ing scheme, of the on-the-fly attribute models and of the
proposed query image selection approach as compared to
the traditional max-entropy active selection approach.
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(b) Pubfig-772-8

Figure 2: Impact of our proposed weighting scheme and of
learning attribute models on the fly on performance

4.2.1 Weighting Scheme

Figure 2 demonstrates the impact of our proposed weighting
scheme (solid vs dashed). Overall, we find that the weight-
ing scheme improves performance significantly, especially
for pre-trained attributes.

4.2.2 Attribute Models Trained On The Fly

Figure 2 also demonstrates the impact of learning the at-
tribute models on the fly (black vs. green). While the
motivation behind learning the attribute models on the fly
was added flexibility and reduced over-head of pre-training
the attributes, surprisingly, we found that they also improve
accuracies significantly. Our analysis revealed that the at-
tribute models learnt on the fly are biased towards adding
fewer but more informative negative examples to the classi-
fiers as compared to the pre-trained attribute models. For
example, after 300 iterations on the Pubfig-900-60, pre-
trained attributes models add on average 415 negative ex-
amples while on-the-fly models add 210. Of these, ∼ 1.3%
are incorrect (i.e. are in fact positive examples) when using
pre-trained attribute model, but only ∼ 0.61% are incor-
rect when using attribute models trained on the fly. Per-
haps more importantly, ∼ 80% of the true positive images
are added to the negative side when using pre-trained at-
tributes, while only ∼ 15% for attributes trained on the fly.
Further, we evaluated the accuracy of the attribute models
at predicting the relative attribute strength in pairs of im-
ages. As seen in Figure 4a, we find that the pre-trained
attribute models are in fact more accurate on average at pre-
dicting the relative order of images. While being worse at-
tribute predictors, the models trained on the fly are better
catered towards providing classifier-feedback. Due to their
superiority, from here on, we only show comparisons to ap-
proaches using attribute models trained on the fly. Note that
the passive approach of Parkash and Parikh [17] with at-



Name of Method
Attribute Feedback

Used
Weighting Scheme

Used
Attributes
Learned Query Image Selection

Baseline passive no N/A N/A random
Baseline active no N/A N/A max-entropy
Parkash & Parikh -active [17] yes no pre-trained max-entropy
Parkash & Parikh -passive yes no pre-trained random
Proposed passive-pre-trained-weights yes yes pre-trained random
Proposed passive-on-the-fly-without-weights yes no on-the-fly random
Proposed passive-on-the-fly-weights yes yes on-the-fly random
Proposed active-maxent-on-the-fly-weights yes yes on-the-fly max-entropy
Proposed yes yes on-the-fly proposed (Section 3.3)

Table 1: Summary of the algorithms that we compare
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Figure 3: Comparing our proposed approach to various baselines (Table 1)

tribute models trained on the fly is the same as “Proposed
passive-on-the-fly-without-weights” in Table 1.

4.2.3 Active Selection

We now evaluate the benefit of our proposed active learn-
ing approach. In Figure 3a, we report exhaustive compar-
isons on PubFig-772-8 (also used in [17]), and show the
most critical comparisons on the remaining two datasets in
Figures 3b and 3c. We find that attributes-based feedback
improves performance significantly. Perhaps somewhat sur-
prisingly, we find that randomly selecting query images per-
forms better than using the maximum entropy criterion used
in traditional active learning. We suspect this to be the case
due to the nature of our application where the supervisor
only accepts or rejects a label for the query image, as op-
posed to providing the correct label as in traditional labeling
tasks. As the classifiers get stronger (around iteration 125 in
Figure 3a), the active approach starts to get better than the
passive approach. However, we see that our proposed active
learning approach significantly outperforms both the tradi-
tional active learning criterion and the passive approach on
all three datasets.

4.2.4 Comparison to Brute Force

We now analyze how much performance we are loosing due
to our clustering approximation (Figure 1). We experiment
with a small unlabeled dataset of 80 images from 8 classes
in PubFig-772-8. We run the brute-force active selection
scheme that involves training all 2NM ranking functions at

each iteration and compare it to our proposed approach that
requires training 2CM ranking functions. The value of C
increases as more images are labeled, making the process
most efficient early on when the classifier gains more from
each labeled example. On average across the learning iter-
ations, our approach was 4 times faster than brute force on
this small dataset without significant loss in performance
(Figure 4b). The speed-up factor (∼ N

C ) was 15 − 20 on
our other larger datasets, and goes up linearly with the av-
erage number of images per class in the unlabeled dataset.

4.2.5 Free-form Feedback

As described in Section 4.1, we also collected attributes-
based feedback using a free-form interface for PubFig-772-
8. The attributes collected were manually grouped (e.g.
young, old, age, etc. all refer to the same attribute) leading
to a final vocabulary of 8 attributes at the end of the learning
process. This set-up mimics the scenario where the super-
visor can truly use any attribute on the fly. Resultant ac-
curacies are seen in Figure 4c. For sake of comparison, we
also show accuracies using the second interface described in
Section 4.1 that used annotations on a list of 11 attributes.

4.2.6 Efficient Use of User’s Effort

If all the training images i.e. 532, 600 and 500 images
from Pubfig-772-8, Pubfig-900-60 and Shoes-750-10 re-
spectively were labeled, the classification accuracy on the
three datasets would be 84%, 48% and 68%. A labeled im-
age corresponds to a scenario where 1 of the K categories
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(c) Free-form attributes-feedback
Figure 4: (a) Attribute models (for PubFig-60-900) learnt on the fly are worse attribute models per say, but are better suited
for providing classifier-feedback than pre-trained attribute models (Figure 2). At each iteration, accuracies are shown only
for the attributes introduced in the vocabulary by the user so far. (b) Our clustering-based fast active learning approach
does not perform significantly worse than the brute-force version of our approach which would be prohibitively slow. (c) A
comparison between two interfaces for collecting attributes-based feedback (Section 4.1)

has been identified to be the correct label i.e. K−1 labels (7,
59 and 9 respectively) have been eliminated for each train-
ing image. This corresponds to a total of 3724, 35400 and
4500 labels that need to be eliminated for each dataset. At
the end of our 150, 300 and 150 iterations (Figure 3), we
find that we have eliminated on average only 13% of these
labels, but achieve accuracies that are 63%, 58% and 65%
of the accuracy possible using a 100% of labeled training
images. This demonstrates efficient use of the user’s effort.

5. Conclusion

We introduced three innovations to enhance the use of
relative attributes in providing classifiers feedback. We
introduced a weighting scheme that intelligently reasons
about the likelihood of any unlabeled image being a neg-
ative example for a category. We also learn attribute models
on the fly, which not only provides increased flexibility to
the supervisor with less overhead of pre-training attribute
predictors, but also leads to significant improvements in
classifier performance. Finally, we introduced a novel ac-
tive learning criterion that accounts for the specific form of
relative attributes-based feedback, leading to improved per-
formance with significantly fewer labeled examples.
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