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1. Overview / A

* Objective: Given images with fine-grained category-labels, discover a vocabulary
of localized attributes that are both semantically meaningful and discriminative

red stripes on wings white belly yellow belly

* We employ an iterative and interactive approach:

A. Find discriminative attribute candidates for 2 similar classes with a latent CRF g o , , ,
. . . . . C. Human verifies semantic meaningfulness and provides a
B. Use a recommender system to identify candidates likely to be meaningful ,
. e name. We update recommender system with user feedback.
C. Present them to a human for naming and verification. Repeat. N
2. Discovering Localized Attributes with Latent CRFs 3. Attribute Discovery Results

* Goal: Find K discriminative local attribute candidates given M images

from two categories * Three subsets of Caltech-UCSD Birds 200 (60 images percategory)

* Define a latent CRF to find regions in positive images that are similar to
one another but dissimilar from negative image regions

Nodes: images, Labels: segments

For candidate k, find regions
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* Encourage diversity across multiple candidates:
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* Attribute detection: add test image to CRF and run inference left wing

* Implementation details: g
— Generating regions: hierarchical segmentation O,
— Region features: color, gPb contour, size, shape, and spatial location "15
— Distances: L2 for spatial location, chi-squared for other features gé E
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4. Image-to-text Generation Results

 QOur approach can annotate unseen images with region labels using our discovered local attributes:
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5. Image Classification Results

 We run attribute detection to produce a binary feature vector for each image, then use these vectors

for fine-grained recognition using Nearest Neighbor and SVM classifiers.

* We compare four approaches to generate localized attributes:

- Proposed: our proposed method that focuses on discriminative power and semantics

— Hand-listed (focus on semantics): expert-generated attributes

(focus on discrimination): non-semantic candidates removed in post-process
— Upper bound (price paid for semantics): all discriminative candidates including non-semantic ones

Our proposed method performs significantly better than existing approaches
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Recommender gathers more attributes and achieves higher accuracy for same amount of user effort
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6. Summary and Conclusions

 Finds local attributes that are both discriminative and human understandable.
* Recommender system prioritizes candidates likely to be meaningful, saving user time.

* Compares favorably to existing attribute discovery approaches.
* More information at http://vision.soic.indiana.edu/attributediscovery
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