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Abstract

Common sense is essential for building intelligent ma-
chines. While some commonsense knowledge is explicitly
stated in human-generated text and can be learnt by mining
the web, much of it is unwritten. It is often unnecessary and
even unnatural to write about commonsense facts. While
unwritten, this commonsense knowledge is not unseen! The
visual world around us is full of structure modeled by com-
monsense knowledge. Can machines learn common sense
simply by observing our visual world? Unfortunately, this
requires automatic and accurate detection of objects, their
attributes, poses, and interactions between objects, which
remain challenging problems. Our key insight is that while
visual common sense is depicted in visual content, it is the
semantic features that are relevant and not low-level pixel
information. In other words, photorealism is not neces-
sary to learn common sense. We explore the use of human-
generated abstract scenes made from clipart for learning
common sense. In particular, we reason about the plausi-
bility of an interaction or relation between a pair of nouns
by measuring the similarity of the relation and nouns with
other relations and nouns we have seen in abstract scenes.
We show that the commonsense knowledge we learn is com-
plementary to what can be learnt from sources of text.

1. Introduction

Teaching machines common sense has been a longstand-
ing challenge at the core of Artificial Intelligence (AI) [8].
Consider the task of assessing how plausible it is for a dog
to jump over a tree. One approach is to mine text sources
to estimate how frequently the concept of dogs jumping
over trees is mentioned. A long history of works address
the problem is this manner by mining knowledge from the
web [5, 21, 24] or by having humans manually specify
facts [4, 28, 33, 34] in text. Unfortunately, text is known
to suffer from a reporting bias. If the frequency of men-
tion was an indication of occurrence in the real world, peo-
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Figure 1: We consider the task of assessing how plausible
a commonsense assertion is based on how similar it is to
known plausible assertions. We argue that this similarity
should be computed not just based on the text in the asser-
tion, but also based on the visual grounding of the assertion.
While “wants” and “looks at” are semantically different,
their visual groundings tend to be similar. We use abstract
scenes made from clipart to provide the visual grounding.

ple are ∼3 times more likely to be murdered than they are
to inhale, and people inhale ∼6 times as often as they ex-
hale [16]. This bias is not surprising. After all, people talk
about things that are interesting to talk about, and unusual
circumstances tend to be more interesting.

While unwritten, commonsense knowledge is not un-
seen! The visual world around us is full of structure mod-
eled by our commonsense knowledge. By reasoning visu-
ally about a concept we may be able to estimate its plausi-
bility more accurately. For instance, while “squirrels want-
ing nuts” is frequently mentioned in text, “squirrels look-
ing at nuts” is rarely mentioned even though it is equally
plausible. However, if we visually imagine a squirrel want-
ing a nut, we typically imagine a squirrel looking at a nut
(Figure 1). This is because wanting something and look-
ing at something tend to be visually correlated, even though
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they have differing underlying meaning. Interestingly, in
the word2vec [27] text embedding space that is commonly
used to measure word similarity, look at is more similar to
feel than to want. Clearly, vision and text provide comple-
mentary signals for learning common sense.

Unfortunately, extracting commonsense knowledge
from visual content requires automatic and accurate de-
tection of objects, their attributes, poses, and interactions.
These remain challenging problems in computer vision.
Our key insight is that commonsense knowledge may be
gathered from a high-level semantic understanding of a vi-
sual scene, and that low-level pixel information is typically
unnecessary. In other words, photorealism is not necessary
to learn common sense. In this work, we explore the use
of human-generated abstract scenes made from clipart for
learning common sense. Note that abstract scenes are in-
herently fully annotated, allowing us to exploit the structure
in the visual world, while bypassing the difficult intermedi-
ate problem of training visual detectors.

Specifically, we consider the task of assessing the plau-
sibility of an interaction or relation between a pair of nouns,
as represented by a tuple (primary noun, relation, secondary
noun) e.g., (boy, kicks, ball). As training data, we collect a
dataset of tuples and their abstract visual illustrations made
from clipart. These illustrations are created by subjects on
Amazon Mechanical Turk (AMT). We use this to learn a
scoring function that can score how well an abstract visual
illustration matches a test tuple.

Given a previously unseen tuple, we assess its plausi-
bility using both visual and textual information. A tuple
is deemed plausible if it has high alignment with the train-
ing tuples and visual abstractions. When measuring textual
similarity between tuples we exploit the significant progress
that has been made in learning word similarities from web
scale data using neural network embeddings [27, 29]. A
tuple’s alignment with the visual abstractions provides in-
formation on its visual plausibility. We model a large num-
ber of free form relations (213) and nouns (2466), which
may form over ≈1 billion possible tuples. We show that
by jointly reasoning about text and vision, we can assess
the plausibility of commonsense assertions more accurately
than by reasoning about text alone.

The rest of this paper is organized as follows. We dis-
cuss related work in Section 2. Our data collection method-
ology is described in Section 3. Our model for classifying
novel commonsense assertions (tuples) as plausible or not is
presented in Section 4. Section 5 describes our experimen-
tal setup, followed by quantitative and qualitative results in
Section 6, and a conclusion in Section 7.

2. Related Work
Common sense and text. There is a rich line of works
which learn relations between entities to build knowl-

edge bases either using machine reading (e.g., Knowl-
edge Vault [11], NELL [5], ReVerb [12]) or using collab-
oration within a community of users (e.g., Freebase [4],
Wikipedia1). We make use of the ReVerb Information Ex-
traction system to create our dataset of tuples (more de-
tails in Section 3.2). Our goal is to learn common sense
from a complementary source: our visual world. A task
closely related to learning common sense from text is an-
swering questions. Systems such as IBM Watson [13] com-
bine multiple text-based knowledge bases to answer factual
questions. Our work focuses on combining different modal-
ities of information (abstract scenes and text) for the task of
assessing the plausibility of commonsense assertions.
Common sense and vision. A popular use of common-
sense knowledge in vision has been for modeling context
for improved recognition [10, 14, 17, 18, 20]. Recently,
there has been a surge in interest in high-level “beyond
recognition” tasks which can benefit from external knowl-
edge beyond what is depicted in the image [3, 19, 23, 30,
31]. Zhu et al. [35] use attribute and action classifica-
tion along with information from various textual knowledge
bases to perform tasks like zero-shot affordance prediction
for human-object interactions. Their dictionary of relations
was specified manually and limited to 19 inter-object rela-
tions. We explore a larger number of free-form relations
(213 in total) extracted from text. Johnson et al. [22] build
a scene graph representation for image retrieval which mod-
els attribute and object relations. LEVAN [9] trains de-
tectors for a variety of bigrams (e.g., jumping horse) from
google n-grams using web-scale image data. NEIL [7] an-
alyzes images on the web to learn visual models of objects,
scenes, attributes, part-of, and other ontology relationships.
Our focus is less on appearance models and more on the un-
derlying semantics. Recent work has also looked at mining
semantic affordances, i.e. inferring whether a given action
can be performed on an object [6]. In contrast, we are in-
terested in the more general problem of predicting the plau-
sibility of interactions or relations between pairs of objects.
Lin and Parikh [26] propose to learn visual common sense
and use it to answer textual fill-in-the-blank and visual para-
phrasing questions, by imagining a scene behind the text.
While they model visual common sense in the context of a
scene, our task is at a more atomic level – reasoning about
the plausibility of a specific relation or interaction between
pairs of objects. Most similar to ours is a concurrent work
VisKE [32] which also studies the task of evaluating the
plausibility of commonsense assertions using visual cues.
Their visual cues are derived from webly-supervised detec-
tion models, while we use abstract scenes and text embed-
dings. A new test tuple can be processed almost instan-
taneously using our approach, while training their webly-
supervised detector takes ∼30 minutes per tuple. It is con-

1http://www.wikipedia.org/



Figure 2: A subset of objects from our clipart library.

ceivable that text, abstract scenes and real images are all
complementary sources of information.

Learning from visual abstraction. Visual abstractions
have been explored for a variety of high-level scene under-
standing tasks. Zitnick and Parikh [37] learn the importance
of various visual features (occurrence, co-occurrence, ex-
pression, gaze, etc.) in determining the meaning or seman-
tics of a scene. Zitnick et al. also link the semantics of a
scene to memorability and saliency of objects [36]. [38]
learns the visual interpretation of sentences and generates
scenes for a given input sentence. Fouhey and Zitnick [15]
learn the dynamics of objects in scenes from temporal se-
quences of abstract scenes. Antol et al. [2] learn models
of fine-grained interactions between pairs of people using
visual abstractions, and evaluate their models on real im-
ages from the web. Lin and Parikh [26] “imagine” abstract
scenes corresponding to text, and use the common sense de-
picted in these imagined scenes to solve textual tasks such
as fill-in-the-blanks and paraphrasing. In this work, we
are interested in using abstract scenes as a complementary
source of commonsense knowledge to text for the task of
classifying commonsense assertions as plausible or not.

3. Datasets
3.1. Abstract Scenes Vocabulary

In order to learn comprehensive commonsense knowl-
edge, it is important for the library of clipart pieces to be
expressive enough to model a wide variety of scenarios.
Previous works on using visual abstractions depicted a boy
and a girl playing in a park [15, 37, 38] with a library of 58
objects, or fine-grained interactions between two people [2]
(no additional objects). Instead, our clipart library allows us
to depict a variety of indoor scenes. It contains 20 “paper-
doll” human models [2] spanning genders, races, and ages
with 8 different expressions. The limbs are adjustable to
allow for continuous pose variations. The vocabulary con-

tains over 100 small and large objects and 31 animals in
various poses, that can be placed at one of 5 discrete scales
or depths in the scene, facing left or right. Our clipart is
also more realistic looking than previous work. A snapshot
of the library can be viewed in Figure 2. Note that while we
restrict ourselves to indoor scenes in this work, our idea is
general and applicable to other scenes as well. More clipart
objects and scenes can be easily added to the clipart library.

3.2. Tuple Extraction

Extracting Seed Assertions: To collect a dataset of com-
monsense assertions, we start by extracting a set of seed
tuples from image captions. We use the MS COCO training
set [25] containing images annotated with 80 object cate-
gories and five captions per image. We pick a subset of
9913 images whose annotated objects all come from a list
of manually selected objects from our library of clipart.2

Note that MS COCO images are not fully annotated and
contain many more objects than those annotated. As a re-
sult, captions for these images could contain nouns that may
not be part of the annotated object list or our clipart library.
Our model can handle this by using word embeddings as
described in Section 4.1.

We split the images into VAL (4956 images) and TEST
(4957 images). We then run the ReVerb [12] information
extraction tool on the captions for these images (images are
not involved anymore), along with some post-processing
(described in supplementary) to obtain a set of (tP , tR, tS)
tuples, where tP is the primary noun, tR is the relation, and
tS is the secondary noun in the tuple t e.g., (plate, topped
with, meat). All tuples containing relations that occur less
than four times in the dataset are likely to be noisy extrac-
tions, and are removed. This gives us a set of 4848 tuples in

2List: person, cat, dog, frisbee, bottle, wine glass, cup, fork, knife,
spoon, apple, sandwich, hotdog, pizza, cake, chair, couch, potted plant,
bed, dining table, tv, book, scissors, teddy bear was selected to capture ob-
jects in our clipart library that are commonly found in living room scenes.



VAL and 4778 in TEST, 213 unique relations in VAL and
204 in TEST, and 2466 unique nouns in VAL and 2378 in
TEST. VAL and TEST have 893 tuples, 814 nouns, and 151
relations in common. These tuples form our seed common-
sense assertions.

Expanding Seed Assertions: We expand our seed set of
assertions by generating random assertions. This is done
on both TEST and VAL independently. We iterate through
each tuple twice, and pair the corresponding tR with a ran-
dom tP and tS from all nouns that occur at least 10 times3.
So there are twice as many expanded tuples as there are
seed tuples. This results in 9700 expanded tuples in VAL
and 9554 in TEST. Note that we are sampling from a space
of 160 primary nouns (>10 occurrences) × 204 relations ×
160 nouns i.e., >5 million possible TEST assertions. In to-
tal across seed and expanded, our VAL set contains 14548
commonsense assertions spanning 213 relations, and our
TEST set contains 14, 332 commonsense assertions span-
ning 204 relations. To the best of our knowledge, ours is
the first work that models such a large number of relations
and commonsense assertions.

Supervision on Expanded Assertions: We then show
our set of assertions (seed + expanded) to subjects on Ama-
zon Mechanical Turk (AMT). We asked them to indicate
if the scenario described by the assertion is typical or not.
They are also given an option to flag scenarios that make no
sense. We collect 10 judgments per assertion. A snapshot
of this interface can be found in the supplementary material.

80.1% of annotations on seed tuples were positive. This
is not surprising because these tuples were extracted from
descriptions of images, and were thus clearly plausible. The
creation of random expanded tuples predominantly adds
negatives. But we found that some randomly generated as-
sertions such as (puppy, lay next to, chair) and (dogs, lay
next to, pepperoni pizza) were rated as plausible (positives).
15.3% of annotations on our expanded tuples were positive.
Overall, 36% of the labels in VAL and 37% of the labels in
TEST are positives.

3.3. Tuple Illustration Interface

We collect abstract illustrations for all 213 relations in
VAL. We get each relation illustrated by 20 different work-
ers on AMT using the interface shown in Figure 3. Each
worker is shown a background scene and asked to mod-
ify it to contain the relation of interest. We used living
room scenes from [1] as background scenes, which were
realistic scenes created by AMT workers using the same
abstract scenes vocabulary as ours (Section 3.1). Priming
workers with different background scenes helps increase

3This is a coarse proxy for sampling nouns proportional to how often
they occur in the seed set.

Figure 3: Our tuple illustration AMT interface.

the diversity in the visual illustrations of relations. For in-
stance, when asked to create a scene depicting ‘holding’, a
majority of workers might default to thinking of a person
holding something while standing. But if they are primed
with a scene where a woman is already sitting on a couch,
then they might place a glass in her hand to make her hold
the glass, resulting in a sitting person holding something.
Workers are then instructed to indicate which clipart pieces
in the scene correspond to the primary and secondary ob-
jects participating in the relation, and name them using as
few words as possible.

To summarize, we collect 20 scenes depicting each of the
213 relations in VAL (4260 scenes total), along with annota-
tions for the primary and secondary nouns and correspond-
ing clipart objects participating in the relation. These form
our set of TRAIN tuples that will be used to train our visual
models of what tuples looks like. The VAL tuples will be
used to learn how much visual alignment is weighted rela-
tive to the textual alignment. The TEST tuples will be used
to evaluate the performance of our approach.

Note that we do not collect illustrations for each VAL tu-
ple because tuples may contain nouns that our clipart library
does not have. Instead, we collect illustrations for each of
the VAL relations. Workers choose to depict these relations
with plausible primary and second objects of their choice,
providing an additional source of commonsense knowledge.
Regardless, as will be evident in the next section, our model
is capable of dealing with nouns and relations at test time
that were not present during training.

4. Approach

We first describe our joint text and vision model, fol-
lowed by a description of the training procedure.



4.1. Model

Let us start by laying out some notation. We are given a
commonsense assertion t′ = (t′P , t

′
R, t
′
S) at test time, whose

plausibility is to be evaluated. t′P is the primary noun, t′R
is the relation, and t′S is the secondary noun. For each ab-
stract training scene created by AMT workers i ∈ I we are
given the primary and secondary clipart objects ciP and ciS ,
as well as a tuple ti = (tiP , t

i
R, t

i
S) containing the names of

the primary and secondary objects (nouns), and the relation
they participate in. Thus, a training instance i is represented
by Ωi = {ciP , ciS , ti}.

We score the plausibility of test tuple t′ using the follow-
ing linear scoring function:

score(t′) = α · ftext(t′) + β · fvisual(t′) (1)

Where α and β tradeoff the weights given to the text
alignment score ftext and the vision alignment score fvision
respectively. The text and vision alignment scores estimate
how well the test tuple t′ aligns to all training instances –
both textual (TRAIN tuples provided by AMT workers) and
visual (training abstract scenes provided by AMT workers).
Tuples which align well with known (previously seen and/or
read) concepts are considered to be more plausible.

Vision and text alignment functions: Both our vision
and text alignment functions have the following form:

f(t′) =
1

|I|
∑
i∈I

max(h(t′,Ωi)− δ, 0) (2)

Where f can be either ftext or fvision. The average goes
over all training instances (i.e., abstract scenes with associ-
ated annotated tuples) in our training set. The activation of
a training instance with respect to a test tuple is determined
by h, which has different forms for vision and text. A ReLU
(Rectified Linear Unit) function is applied to the activation
score offset by δ. We use a threshold of zero for the ReLU
because the notion of negative plausibility evidence for a
tuple is not intuitive. One can view Equation 2 as counting
how many times a tuple was observed during training. The
parameter δ is used to threshold the activation h to estimate
counts. From here on we refer to h as the alignment score
(overloaded with f ).

Text alignment score: The textual alignment score htext
between two tuples is a linear combination of similari-
ties between the corresponding pairs of primary nouns,
relations, and secondary nouns. These similarities are
computed using dot products in the word2vec embedding
space [27]. For nouns or relations containing more than one
word (e.g., “gather around” or “chair legs”), we average the
word2vec vectors of each word to obtain a single vector.

Let W (x) be the vector space embedding of a noun or
relation x. The text alignment score is given as follows:

htext(t
′,Ωi) = W (t′P )T ·W (tiP )

+W (t′R)T ·W (tiR) +W (t′S)T ·W (tiS) (3)

Where · denotes the cosine similarity between vectors.

Vision alignment score: The visual alignment score
computes the alignment between (i) a given test tuple and
(ii) the pair of clipart pieces selected by AMT workers as
being the primary and secondary objects in a training in-
stance i. It measures how well the pair of clipart pieces (ciP ,
ciS) depict the test tuple t′. If a test tuple finds support from
a large number of visual instances, it is likely to be plausi-
ble. Note that we are measuring similarity between words
and arrangements of clipart pieces. Consequently, this is a
multimodal similarity function.

Given the pair of primary and secondary clipart pieces
annotated in training instance Ωi, we extract features as de-
scribed in Section 5. We denote these extracted features
as u(ciP , c

i
S). Using these visual features from the training

instance Ωi and text embeddings from test tuple t′, we com-
pute the following vision alignment score:

hvision(t′,Ωi) = u(ciP , c
i
S)TAPW (t′P )

+ u(ciP , c
i
S)TARW (t′R) + u(ciP , c

i
S)TASW (t′S) (4)

Where AP , AR, and AS are alignment parameters to
be learnt. Our vision alignment score measures how well
the t′P , t′R, and t′S individually match the visual features
u(ciP , c

i
S) that describe a pair of clipart objects in training

instance Ωi. One can think of u(ciP , c
i
S)AP , u(ciP , c

i
S)AR,

and u(ciP , c
i
S)AS as embeddings or projections from the

vision space to the word2vec text space, such that a high
dot product in word2vec space leads to high alignment, and
subsequently a high plausibility score for plausible tuples.
The embeddings are learnt separately for t′P , t′R and t′S (as
parameterized by AP , AR and AS) because different visual
features might be useful for aligning to the primary noun,
relation, and secondary noun.

The parameters AP , AR, and AS can also be thought of
as grounding parameters. That is, given a word2vec vec-
tor W , we learn parameters to find the visual instantiation
of W . ARW (t′R) can be thought of as the visual instan-
tiation of t′R which captures what the interaction between
two objects related by relation t′R looks like. APW (t′P )
and ASW (t′S) can be thought of as identifying which cli-
part pieces and with what attributes correspond to nouns t′P
and t′S . Our model finds the visual grounding of t′P , t′R, and
t′S separately, and then measures similarity of the inferred
grounding to the actual visual features observed in training
instances. Thus, given a test tuple, we hallucinate a ground-
ing for it and measure similarity of the hallucination with
the training data. Note that these hallucinations are learnt



discriminatively to help us align concepts in vision and text
such that plausible tuples are scored highly.

4.2. Training

To learn the parameters AP , AR, AS in our vision align-
ment scoring function (Equation 4), we consider the outer
product space of the vectors u and W . We learn a linear
SVM in this space to separate the training instances (tuples
+ corresponding abstract scenes, Section 3.3), from a set
of negatives. Each negative instance is a tuple from our
TRAIN set, paired with a random abstract scene from our
training data. We sample three times as many negatives as
positives. Overall we have 4260 positives and 12780 nega-
tives. Finally, the learnt vectors are reshaped to get AP , AR

and AS respectively. We learn the vision vs. text tradeoff
parameters α and β (Equation 1) on the VAL set of tuples
(Section 3.2). Recall that these include seed and expanded
tuples, along with annotations indicating which tuples are
plausible and which are not. We use the vision and text
alignment scores as features and train a binary SVM to sep-
arate plausible tuples from implausible ones. The weights
learnt by the SVM correspond to α and β. Finally, the pa-
rameter δ in Equation 2 is set using grid search on the VAL
set to maximize the average precision (AP) of predicting a
tuple as being plausible (positive) or not.

5. Experimental Setup
We first describe the features we extract from the abstract

scenes. We then list the baselines we compare to.

5.1. Visual Features

As explained in Section 3.1, we have annotations indicat-
ing which pairs of objects (cP , cS) in an abstract scene par-
ticipated in the corresponding annotated tuple. Using these
objects and the remaining scene, we extract three kinds of
features to describe the pair of objects (cP , cS): 1) Object
Features 2) Interaction Features 3) Scene Features. These
three together form our visual feature set. Object Features
consist of the type (category, instance) of the object (Sec-
tion 3.1), flip (left facing or right) of the object, absolute lo-
cation, attributes (for humans), and poses (for humans and
animals). The absolute location feature is modeled using a
Gaussian Mixture Model (GMM) with 9 components, learnt
separately across five discrete depth levels, similar to [38].
The GMM components are common across all objects, and
are learnt using all objects present in all abstract scenes.
Human attributes are age (5 discrete values), skin color (3
discrete values) and gender (2 discrete values). Animals
have 5 discrete poses. Human pose features are constructed
using keypoint locations. These include global, contact, and
orientation features [2]. Global features measure the posi-
tion of joints with respect to three gaussians placed on the
head, torso, and feet respectively. Contact features place

smaller gaussians at each joint and measure the positions of
other joints with respect to each joint. Orientation features
measure the joint angles between connected keypoints. In-
teraction Features encode the relative locations of the two
objects participating in the relation, normalized for the flip
and depth of the first object. This results in the relative lo-
cation features being asymmetric. We compute the relative
location of the primary object relative to the secondary ob-
ject and vice versa. Relative locations are encoded using a
24 component GMM (similar to [38]). Scene Features indi-
cate which types (category, instance) of objects (other than
cP and cS) are present in the scene. Overall, there are 493
object features each for the primary and secondary objects,
48 interaction features, and 188 global features, resulting in
a visual feature vector of dimension 1222.

5.2. Baselines

We experiment with a variety of strong baselines that use
text information alone. They help evaluate how much com-
plementary information vision adds, and if this additional
information can be obtained simply from additional or dif-
ferent kinds of text (e.g., generic vs. visual text).
• WikiEmbedding: Our first baseline uses the ftext part of

our model (Equation 1) alone. It uses word2vec trained
on generic Wikipedia text.

• COCOEmbedding: Our next baseline also uses the
ftext part of our model (Equation 1) alone, but uses
word2vec trained on visual text (>400k captions in the
MS COCO training dataset).

• ValText: Recall that both our TEST and VAL tuples were
extracted from captions describing COCO images. Our
next baseline computes the plausibility of a test tuple
by counting how often that tuple occurred in VAL. This
helps assess the overlap between our TEST and VAL tu-
ples (recall: no images are shared between TEST and
VAL). Note that the above two baselines, WikiEmbed-
ding and COCOEmbedding, can be thought of as ValText
but by using soft similarities (in word2vec space) rather
than using counts based on exact matches.

• LargeVisualText: Our next baseline is a stronger version
of ValText. Instead of using just our VAL tuples to eval-
uate the plausibility of a test tuple, it extracts tuples from
a large corpus of text describing images (>400k captions
in the MS COCO training dataset which are not in our test
set (Section 3.2)). This gives us a set of 91K assertions.
At test time, we check how many times the test assertion
occurred in this set, and use that count as the plausibility
score of the test tuple.

• BigGenericText (Bing): In this baseline, we evaluate
the performance of assessing the plausibility of tuple
t′ = (t′P , t

′
R, t
′
S) in the test set using all the text on the

web. We query the Bing4 search API and compute the
4http://www.bing.com/



Approach Test Performance
AP Rank Correlation × 100

WikiEmbedding 68.4 41.7
COCOEmbedding 72.2 49.0
ValText 53.0 31.0
LargeVisualText 58.0 37.6
BigGenericText (Bing) 44.6 20.3

Table 1: Performance of different text based methods

Approach Test Performance
AP Rank Correlation × 100

Text (COCOEmbedding) + Vision 73.6 50.0
Vision Only 68.7 45.3
Text (COCOEmbedding) Only 72.2 49.0

Table 2: Text+ vision outperforms text alone.

log-frequencies of t′P , t′R, t′S as well as t′. We train an
SVM on these four features to separate plausible tuples in
our VAL set from implausible tuples, and use this SVM at
test time to compute the plausibility score of a test tuple.

5.3. Evaluation

Recall that we collected 10 human judgements for the
plausibility of each test tuple (Section 3.2). We count
the number of subjects who thought the tuple was plausi-
ble (count+). We also count the number of subjects who
thought the tuple was not plausible (count−). count+ +
count− need not be 10 because subjects were allowed to
marked tuples as “does not make sense”. These scores are
then combined into a single score = count+ − count−.
We threshold these scores at 0 to get our set of positive and
negative human (ground truth) labels. That is, a tuple is
considered to be plausible if more people thought it is plau-
sible than not. Our method as well as the baselines produce
a score for the plausibility of each tuple in the TEST set.
These scores are thresholded and compared to the human la-
bels to compute average precision (AP). We also rank tuples
based on their predicted plausibility scores and human plau-
sibility scores (score = count+−count−). These rankings
are compared using a rank correlation, which forms our sec-
ond evaluation metric.

6. Results
We begin by comparing our text-based baseline models.

We then demonstrate the advantage of using vision and text
jointly, over using text alone or vision alone. We then show
qualitative results. We finally comment on the potential our
approach has to enrich existing knowledge bases.

6.1. Different Text Models

Of all the text-alone baselines (Table. 1), we find that
BigGenericText (Bing) does the worst, likely because it

suffers heavily from the reporting bias on the web. The
LargeVisualText baseline does better than Bing, presum-
ably because the captions in MS COCO describe what is
seen in the images which may often be mundane details de-
picted in the image, and aligns well with the source of our
tuples (visual text). ValText performs worse than LargeVi-
sualText because ValText uses less data. But adding soft
similarities using word2vec embeddings (WikiEmbedding
and COCOEmbedding) significantly improves performance
(15.4 and 19.2 in absolute AP). COCOEmbedding performs
the best among all text-alone baselines, and is what we will
use as our “text only” model moving forward.

6.2. Joint Text + Vision Model

We compare the performance of text + vision, vision
alone, and text alone in Table. 2. We observe that text + vi-
sion performs better than text alone and vision alone by
1.4% and 4.9% AP respectively. In terms of rank corre-
lation, text + vision provides an improvement of 1.0 over
text alone. Overall, vision and text provide complementary
sources of common sense.

6.3. Qualitative Results

We first visualize relation similarity matrices for text and
vision alone (Figure 4). Each entry in the text matrix is the
word2vec similarity between the relations specified in the
corresponding row and columns. Each row is normalized to
sum to 1. For vision, each entry in the matrix in the propor-
tion of images depicting a relation (row) whose embeddings
– after being transformed by AR – are most similar to the
word2vec representation of another relation (column). This
illustrates what our visual alignment function has learnt. We
randomly sample a subset of 20 relations for visualization
purposes. We can clearly see that the two matrices are qual-
itatively different and complementary. For instance, visual
cues tell us that the relations like “sleep next to” and “sur-
rounded by” are similar.

In Figure 5 we show you several scenes created by AMT
workers. Note that for clarity we only show the primary
and secondary objects as identified by workers, but our
approach uses all objects present in the scene. For each
scene, we show the “GT” tuple provided by workers, as
well as the “Vision only” tuple. This is computed by em-
bedding the scene using our learnt AP , AR, and AS into
the word2vec space and identifying the nouns and relations
that are most similar. The left most column shows scenes
where the visual prediction matches the GT. The next col-
umn shows scenes where the visual prediction is incorrect,
but reasonable (even desirable) and would not be captured
by text. Consider (boy, hold onto, pizza) and (boy, take,
pizza) whose similarity would be difficult to capture via
text. The next column shows examples where the tuples are
visually as well as textually similar. The last column shows



(a) Textual similarity between relations (b) Visual similarity between relations
Figure 4: Visual and textual similarities are qualitatively different, and capture complimentary signals.

GT: dogs gather around table

Vision: dogs gather around table

GT: kitten lay down in pet bed

Vision: kitten lay down in bed

GT: tea served on table

Vision: tea served on table

GT: woman pick up dog

Vision: woman walk dog

GT: baby pose in front of toy house

Vision: baby play toy

GT: boy place bottle

Vision: boy open bottle

GT: boy throw toy

Vision: boy hold onto toy

GT: boy hold onto pizza

Vision: boy take pizza

GT: cat curl up on lap

Vision: cat next to girl

GT: woman prepare to cut food

Vision: woman eat food

GT: dog chase cat

Vision: dog catch cat

GT: boy rest on stool

Vision: boy on chair

GT: salad covered in dressing

Vision: french fries made soup

GT: cat whip yarn ball around

Vision: cat is ball

GT: kitten catch mouse

Vision: mouse are mouse

Vision Correct Vision Incorrect But Reasonable
Vision and Text Both 

Reasonable
Vision Incorrect

Figure 5: Qualitative examples demonstrating visual similarity between tuples.

failure cases where the visual prediction is unreasonable.

6.4. Enriching Knowledge Bases

ConceptNet [34] contains commonsense knowledge
contributed by volunteers. It represents concepts with nodes
and relations as edges between them. Out of our 213 VAL
relations, only one relation (“made of”) currently exists in
ConceptNet. Thus, our approach can add many visual com-
monsense relations to ConceptNet, and boost its recall.

7. Conclusion

In this paper we considered the task of classifying com-
monsense assertions as being plausible or not based on how
similar they are to assertions that are known to be plausible.
We argued that vision provides a complementary source of

commonsense knowledge to text. Hence, in addition to rea-
soning about the similarity between tuples based on text,
we propose to ground commonsense assertions in the visual
world and evaluate similarity between assertions using vi-
sual features. We demonstrate the effectiveness of abstract
scenes in providing this grounding. We show that assertions
can be classified as being plausible or not more accurately
using vision + text, than by using text alone. All our datasets
and code are publicly available.
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