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Human-Machine CRFs for Identifying
Bottlenecks in Scene Understanding

Roozbeh Mottaghi, Sanja Fidler, Alan Yuille, Raquel Urtasun, Devi Parikh

Abstract—Recent trends in image understanding have pushed for scene understanding models that jointly reason about various
tasks such as object detection, scene recognition, shape analysis, contextual reasoning, and local appearance based classifiers.
In this work, we are interested in understanding the roles of these different tasks in improved scene understanding, in particular
semantic segmentation, object detection and scene recognition. Towards this goal, we “plug-in” human subjects for each of the
various components in a conditional random field model. Comparisons among various hybrid human-machine CRFs give us
indications of how much “head room” there is to improve scene understanding by focusing research efforts on various individual
tasks.

Index Terms—Scene Understanding, Semantic Segmentation, Object Detection, Scene Recognition, Human-Machine Hybrid
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1 INTRODUCTION

Automatic scene understanding is one of the main
goals of computer vision. Given the lofty challenge it
presents, the community has historically studied indi-
vidual tasks in isolation. This includes tasks such as
object detection [1], scene recognition [2], contextual
reasoning among objects [3], and pose estimation [4].
However, clearly these tasks are related. For example,
knowing that the image is a street scene influences
where and at what scales we expect to find people.
Detecting a microwave in an image can help identify
a kitchen scene. Studies have shown that humans
can effectively leverage contextual information from
the entire scene to recognize objects in low resolution
images that can not be recognized in isolation [5].

Recent works [6], [7], [8], [9], have thus pushed on
holistic scene understanding models. The advent of
general learning and inference techniques for graphi-
cal models has provided the community with appro-
priate tools to allow for joint modeling of various
scene understanding tasks. These have led to some
of the state-of-the-art approaches.

In this paper, we aim to determine the relative
importance of the different recognition tasks in aiding
scene understanding. We wish to know, which of
the tasks if improved, can boost performance sig-
nificantly. In other words, to what degree can we
expect to improve scene understanding performance
by improving the performance of individual tasks?
We argue that understanding which problems to solve
is as important as determining how to solve them.
Such an understanding can provide valuable insights
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into which research directions to pursue for further
improving the state-of-the-art. We use semantic seg-
mentation, object detection and scene recognition ac-
curacies as proxies for scene understanding perfor-
mance.

We analyze one of the most recent and comprehen-
sive scene understanding models [7]. It is a condi-
tional random field (CRF) that models the interplay
between a variety of factors such as local super-pixel
appearance, object detection, scene recognition, shape
information, class co-occurrence, and compatibility of
classes with scene categories. To gain insights into the
relative importance of these different factors or tasks,
we isolate each task, and substitute a machine with
a human for that task, keeping the rest of the model
intact. The resultant improvement in performance of
the model, if any, gives us an indication of how
much “head room” there is to improve performance
by focusing research efforts on that task. Note that
human outputs are not synonymous with ground
truth information, because the tasks are performed
in isolation. For instance, humans would not produce
ground truth labels when asked to classify a super-
pixel in isolation into one of several categories. In
fact, because of inherent local ambiguities, the most
intelligent machine of the future will likely be unable
to do so either. Hence, the use of human subjects in
our studies is key, as it gives us a feasible point (hence,
a lower- bound) of what can be done.

Our slew of studies reveal several interesting find-
ings. For instance, we found that human classifica-
tion of isolated super-pixels when fed into the model
provides a 5% improvement in segmentation accuracy
on the MSRC dataset. Hence, research efforts focused
towards the specific task of classifying super-pixels in
isolation may prove to be fruitful. Even more intrigu-
ing is that the human classification of super-pixels is
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in fact less accurate than machine classification when
pixels outside super-pixels are not visible. However
when plugged into the model, human potentials pro-
vide a significant boost in performance. This indicates
that to improve segmentation performance, instead of
attempting to build super-pixel classifiers that make
fewer mistakes, research efforts should be dedicated
towards making the right kinds of mistakes. This
provides a refreshing new take on the now well
studied semantic segmentation task.

Excited by this insight, we conducted a thorough
analysis of the human generated super-pixel poten-
tials to identify precisely how they differ from existing
machine potentials. Our analysis inspired a rather
simple modification of the machine potentials which
resulted in a significant increase of 2.4% in the ma-
chine accuracy (i.e. no human involvement) over [7],
one of the high performing methods on the MSRC
dataset. Also, our human studies and machine experi-
ments on a subset of the PASCAL-Context dataset [10]
reveal similar complementary patterns in the mistakes
made by humans and machines.

We also studied how well humans can leverage
the contextual information modeled in the CRF. We
measure human and machine segmentation perfor-
mance while progressively increasing the amount of
contextual information available. We find that even
though humans perform significantly worse than ma-
chines when classifying isolated super-pixels (with
no pixels outside super-pixels visible to the humans),
they perform better than machines when both are
given access to the contextual information modeled
by the CRF.

Our key findings and experiments can be summa-
rized as follows: 1) The performance of humans in
super-pixel classification is significantly lower than
machines when humans only see the super-pixels and
machines use neighboring regions for classification.
However, using human super-pixel classification po-
tential inside the CRF model, significantly improves
the performance (Section 6.1). 2) Providing contex-
tual information to humans significantly improves
their performance, while our machine implementa-
tion does not leverage that contextual information as
well (Section 7.1). 3) We show that humans have a
relatively low performance in recognition when they
are shown only super-pixel boundaries (Section 5.4).
4) We propose a new way to estimate contextual co-
occurrence of the categories using humans and show
that the context statistics obtained by humans are
not significantly different from those of the machine
(Section 5.2). 5) We show that shape priors obtained
from human subjects (drawn by following super-pixel
boundaries) are not much better than machine shape
priors (Supplementary Material).

Section 2 describes other scene understanding
works and also human studies related to computer
vision models. In Section 3, we explain the machine

CRF model used for our experiments. In Section 4, the
datasets we used for the experiments are described.
Section 5 explains how we obtain the machine and
human-based potential functions for the CRF model.
Section 6 presents the result of plugging-in human or
ground truth potential functions in the CRF model.
Finally, in Section 7 we analyze the model to see how
much potential it holds for improvement and whether
the components used in the model are beneficial for
humans.

2 RELATED WORK

Scene Understanding: The key motivation behind
scene understanding, going back to the seminal work
of Barrow in the seventies [11], is that ambiguities
in visual information can only be resolved when
many visual processes are working collaboratively.
A variety of approaches have since been proposed.
Many of these works incorporate various tasks in a
sequential fashion, by using the output of one task
(e.g., object detection) as features for other tasks (e.g.,
depth estimation, object segmentation) [8], [12], [13],
[14], [15]. There are fewer efforts on joint reasoning
of the various recognition tasks. In [16], contextual
information was incorporated into a CRF leading to
improved object detection. A hierarchical generative
model spanning parts, objects and scenes is learnt
in [17]. Joint estimation of depth, scene type, and
object locations is performed in [9]. Spatial contextual
interactions between objects have also been mod-
eled [3], [18]. Image segmentation and object detection
are jointly modeled in [6], [19], [20] using a CRF.
[21] also models global image classification in the
CRF. In this paper, orthogonal to these advances, we
propose the use of human subjects to understand the
relative importance of various recognition tasks in
aiding scene understanding.
Human-Studies: Numerous human-studies have been
conducted to understand the human ability to seg-
ment an image into meaningful regions or objects.
Rivest and Cavanagh [22] found that luminance, color,
motion and texture cues for contour detections are
integrated at a common site in the brain. Fowlkes
[23] found that machine performance at detecting
boundaries is equivalent to human performance in
small gray-scale patches. These and other studies are
focused on the problem of unsupervised segmenta-
tion, where the task is to identify object boundaries.
In contrast, we are interested in scene understanding,
including the task of identifying the semantic category
of each pixel in the image.

Several works have studied high-level recognition
tasks in humans. Fei-Fei et al. [24] show that humans
can recognize scenes rapidly even while being dis-
tracted. Bachmann et al. [25] show that humans can
reliably recognize faces in 16×16 images, and Oliva et
al. [26] present similar results for scene recognition.
Torralba et al. [5] show that humans can reliably detect
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objects in 32×32 images. In contrast, we study human
performance at tasks that closely mimic existing holis-
tic computational models for scene understanding in
order to identify bottlenecks, and better guide future
research efforts.

Human debugging i.e. using human subjects to iden-
tify bottlenecks in existing computer vision systems
has been recently explored for a number of different
applications such as analyzing the relative importance
of features, amount of training data and choice of
classifiers in image classification [27], of part detec-
tion, spatial modeling and non-maximal suppression
in person detection [28], of local and global image
representations in image classification [29], and of
low-, mid- and high-level cues in detecting object
contours [30]. In this work, we are interested in sys-
tematically analyzing the roles played by several high-
and mid-level tasks such as grouping, shape analysis,
scene recognition, object detection and contextual in-
teractions in scene understanding. While similar at the
level of exploiting human involvement, the problem,
the model, the methodologies of the human studies
and machine experiments, as well as the findings and
insights are all novel.

This work is an extension of [31]. [31] addresses
only the semantic segmentation task. Here we look
at two additional tasks: object detection and scene
recognition. Additionally, we analyze whether the
pipeline is capable of achieving near-perfect accura-
cies for semantic segmentation, object detection and
scene recognition. We also report results on a more
challenging dataset.

3 CRF MODEL

We analyze the CRF model of [7] which performs
scene understanding by jointly reasoning about a
variety of components. While the model shares sim-
ilarities with past work [19], [21], [32], we choose
this model because it provides the best performance
among the mentioned methods, and thus forms a
great starting point to ask “which components need
to be improved to push the performance further?”.
Moreover, it has a simple “plug-and-play” architec-
ture making it feasible to insert humans in the model.
Inference is performed via message passing [33] and
so it places no restrictions (e.g. submodularity) on the
potentials. This allows us to conveniently replace the
machine potentials with human responses: after all,
we cannot quite require humans to be submodular!

We now briefly review this model (Figure 1). We
refer the reader to [7] for further technical details. The
problem of scene understanding is formulated as that
of inference in a CRF. The random field contains vari-
ables representing the class labels of image segments
at two levels in a segmentation hierarchy: super-pixels
and larger segments. To be consistent with [7], we
will refer to them as segments and super-segments.
The model also has binary variables indicating the
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Fig. 1: Overview of the scene model of [7] that we
analyze using human subjects. For clarity, not all
connections in the model are shown here.

correctness of candidate object detection bounding
boxes. In addition, a multi-labeled variable represents
the scene type and binary variables encode the pres-
ence/absence of a class in the scene.

The segments and super-segments reason about the
semantic class labels to be assigned to each pixel in
the image. The model employs these two segmen-
tation layers for computational efficiency: the super-
segments are fewer but more densely connected to
other parts of the model. The binary variables corre-
sponding to each candidate bounding box generated
by an object detector allow the model to accept or
reject these detections. A shape prior is associated
with these nodes encouraging segments to take on
corresponding class labels. The binary class variables
reason about which semantic classes are present in the
image. This allows for a natural way to model class
co-occurrences as well as scene-class affinities. These
binary class variables are connected to i) the super-
segments via a consistency potential that ensures that
the binary variables are turned on if a super-segment
takes the corresponding class label ii) binary detector
variables via a similar consistency potential iii) the
scene variable via a potential that encourages certain
classes to be present in certain scene types iv) to each
other via a potential that encourages certain classes to
co-occur more than others.

More formally, let xi ∈ {1, · · · , C} and yj ∈
{1, · · · , C} be two random variables representing the
class label of the i-th segment and j-th super-segment.
We represent candidate detections as binary random
variables, bi ∈ {0, 1}, taking value 0 when the de-
tection is a false detection. A deformable part-based
model [1] is used to generate candidates. The detector
provides us with an object class (ci), the score (ri), the
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location and aspect ratio of the bounding box, as well
as the root mixture component ID that has generated
the detection (mi). The latter gives us information
about the expected shape of the object. Let zk ∈ {0, 1}
be a random variable which takes value 1 if class k
is present in the image, and let s ∈ {1, . . . , Cl} be a
random variable representing the scene type among
Cl possible candidates. The parameters corresponding
to different potential terms in the model are learnt
in a discriminative fashion [34]. Before we provide
details about how the various machine potentials are
computed, we first discuss the dataset we work with
to ground further descriptions.

4 DATASET

We use the standard MSRC-21 [35] semantic labeling
benchmark, also used by [7], as it contains “stuff”
(e.g., sky, water) as well as “things” (i.e., shape-defined
classes such as cow, car). The PASCAL dataset is more
challenging in terms of object (“things”) detection
and segmentation, but a large portion of its images,
especially “stuff”, is unlabeled. Hence, we augment a
subset of PASCAL dataset with additional categories
[10] and report results on that.

We use the more precise ground truth of MSRC pro-
vided by Malisiewicz and Efros [36] and used in [7],
as it offers a more accurate measure of performance.
We use the same scene category and object detection
annotations as in [7]. Table 1 lists this information.
As the performance metric we use average per-class
recall (average accuracy). Similar trends in our results
hold for average per-pixel recall (global accuracy [19])
as well. We use the standard train/test split from [37]
to train all machine potentials, described next.

5 MACHINE & HUMAN CRF POTENTIALS

We now describe the machine and human potentials
we employed. Section 6 presents the results of feeding
the human “potentials” into the machine model. Our
choices for the machine potentials closely follow those
made in [7]. For human potentials, we performed all
human studies on Amazon Mechanical Turk. Unless
specified otherwise, each task was performed by 10
different subjects. Depending on the task, we paid
participants 3−5 cents for answering 20 questions. The
response time was fast, taking 1 to 2 days to perform
each experiment. We randomly checked the responses
of the workers and excluded those that did not follow
the instructions1. More than 500 subjects participated
in our studies that involved∼ 300, 000 crowd- sourced
tasks, making the results obtained likely to be fairly
stable across a different sampling of subjects.

1. As our experiments will demonstrate, the fact that we can train
the CRF parameters on responses of human subjects and have it
generalize well to human responses to held out test images vouches
for the reliability of the collected human responses.

Fig. 2: Segment labeling interface. We ask the human
subjects to choose the category that the segment be-
longs to. If the subjects are confused among a few
categories, they have the option of choosing more than
one answer.

5.1 Segments and super-segments
Machine: We use UCM [38] to create our segments
and super-segments as it returns a small number of
segments for each instance of a category. We use
thresholds 0.08 and 0.16 for the segments and super-
segments respectively. On average, this results in 65
segments and 19 super-segments per image for the
MSRC dataset. We use the output of the modified
TextonBoost [35] in [32] to get pixel-wise potentials
and average those within the segments and super-
segments to get the unary potentials. Following [39],
we connect these two levels via a pairwise Pn poten-
tial that encourages segments and super-segments to
take the same label.
Human: Now, we describe how we compute the
segment classification potentials for the human case.
Of course, ground truth segmentation annotations are
themselves generated by humans, but by viewing
the whole image and leveraging information from
the entire scene. In this study, we are interested in
evaluating how each recognition task in isolation can
help the overall performance.

To follow the exact procedure of TextonBoost, we
need to show human subjects a window around each
pixel in a segment and have human subjects classify
the pixels into one of the semantic categories. Then,
we can average the results over pixels to obtain the
segment classification potential. However, this pro-
cedure is prohibitively expensive as there are ∼ 1
million pixels in each image. Therefore, instead of the
above procedure, we show all pixels of a segment to
subjects and ask them to classify the segment. Hence,
just like a machine has a potential for every segment,
we have a “human” potential for every segment. This
allows us to replace the machine potential with a
human potential in the model.

We experimented with several interfaces e.g., show-
ing subjects a collection of segments and asking them
to click on all the ones likely to belong to a certain
category, or allowing a subject to select only one
category per segment, etc. before converging to the
one that resulted in most consistent responses from
subjects (Figure 2) where subjects are asked to select
all categories that a segment may belong to.

Figure 3 shows examples of segmentations obtained
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TABLE 1: MSRC-21 dataset information
building
grass
tree
cow
sheep
sky
aeroplane
water
face
car
bicycle
flower
sign
bird
book
chair
road
cat
dog
body
boat

Fig. 3: Human labeling results on isolated segments.

by assigning each segment to the class with most hu-
man votes. The black regions correspond to either the
“void” class (unlabeled regions in the MSRC dataset)
or to small segments not being shown to the subjects.
Assigning each segment to the class with the high-
est number of human votes achieves an accuracy of
72.2%. Although usually a 200× 200 window around
each pixel is used for TextonBoost, we tried different
window sizes (10× 10, 20× 20, 30× 30, and 40× 40),
which resulted in 66.3%, 70.8%, 75.6%, and 77.2%
accuracy, respectively2. It is interesting that humans
perform worse than some machine cases. However,
they are better at classifying certain “easy”, distinctive
classes or classes they are familiar with e.g., faces (see
confusion matrix in Figure 11(b)).

The C dimensional human unary potential for a
(super)segment is proportional to the number of times
subjects selected each class, normalized to sum to 1.
We set the potentials for the unlabeled (smaller than
500 pixels) (super)segments to be uniform.

5.2 Class occurrence and co-occurrence
Machine: We use class-occurrence statistics extracted
from training data as a unary potential on zk. We
also employ pairwise potentials between zi and zk
that capture co-occurrence statistics of pairs of classes.
However, for efficiency reasons, instead of using a
fully connected graph, we use a tree-structure ob-
tained via the Chow-Liu algorithm [40] on the class-
class co-occurrence matrix.
Human: To obtain class-occurrence, we showed sub-
jects 50 random images from the MSRC dataset to
help them build an intuition for the image collection
(not to count the occurrence of objects in the images).
For all pairs of categories, we then ask subjects which

2. This accuracy is calculated only over segments larger than 500
pixels that were shown to humans.

category is more likely to occur in an image from
the collection. We build the class unary potentials by
counting how often each class was preferred over all
other classes. We ask MAP-like questions (“which is
more likely”) to build an estimate of the marginals
(“how likely is this?”) because asking subjects to
provide scalar values for the likelihood of something
is prone to high variance and inconsistencies across
subjects.

To obtain the human co-occurrence potentials we
ask subjects the following question for all triplets of
categories {zi, zj , zk}: “Which scenario is more likely
to occur in an image? Observing (zi and zj) or (zi
and zk)?”. Note that in this experiment we did not
show subjects any images. The obtained statistics thus
reflect human perception of class co-occurrences as
seen in the visual world in general rather than the
MSRC dataset. Given responses to these questions, for
every category zi, we count how often they preferred
each category zj over the other categories. This gives
us an estimate of P (zj |zi) from humans. We compute
P (zi) from the training images to obtain P (zi, zj),
which gives us a 21×21 co-occurrence matrix. We use
the Chow-Liu algorithm on this matrix, as was used
in [7] on the machine class co-occurrence potentials
to obtain the tree structure, where the edges connect
highly co-occurring nodes. As shown in Figure 4,
the structure of the human tree is quite similar to
the tree obtained from the MSRC training set. For
example, in both trees, there are edges between grass
and categories like cow, sheep, and flower. However,
some edges exist in the human tree that are missing
in the machine tree e.g., the edge between sky and
bird.

5.3 Detection
Machine: Detection is incorporated in the model by
generating a large set of candidate bounding boxes
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Fig. 4: Chow-Liu trees for humans and machine. The
trees share several similarities.

using the deformable part-based model [1] which has
multiple mixture components for each object class.
The CRF model reasons about whether a detection
is a false or true positive. On average, there are 16
hypotheses per image. A binary variable bi is used
for each detection and it is connected to the binary
class variable, zci , where ci is the class of the detector
that fired for the i−th hypothesis.
Human: Since most objects in the MSRC dataset are
quite big, it is expected that human object detection
would be nearly perfect. As a crude proxy, we showed
subjects images inside ground truth object bounding
boxes and asked them to recognize the object. Perfor-
mance was almost perfect at 98.8%. Hence, we use
the ground truth object bounding boxes to simulate
human responses.

5.4 Shape
Machine: Shape potentials are incorporated in the
model by connecting the binary detection variables
bi to all segments xj inside the detection’s bounding
box. The prior is defined as an average training mask
for each detector’s mixture component. The values
inside the mask represent the confidence that the cor-
responding pixel has the same label as the detector’s
class. In particular, for the i-th candidate detection,

Fig. 5: Human object recognition from image bound-
aries. We show subjects segments inside the object
bounding box and ask them to recognize the category
of the object. We show the segments with (left image)
and without (right image) context.

car face sheep

Fig. 6: Human shape mask labeling interface. Human
subjects were asked to draw the object boundaries
along the segment contours.

this information is incorporated in the model by en-
couraging the xj segment to take class ci with strength
proportional to the average mask values within the
segment. In the supplementary material, we explain
different shape priors that we have used.
Human: We showed 5 subjects the segment bound-
aries in the ground truth object bounding boxes along
with its category label and contextual information
from the rest of the scene. Figure 6 shows a few
examples. We showed subject contextual information
around the bounding box because without it humans
were unable to recognize the object category reliably
using only the boundaries of the segments in the box
(55% accuracy). With context, classification accuracy
was 94%. See Figure 5 for example images.

Using the interface of [41], subjects were asked to
trace a subset of the segment boundaries to match
their expected shape of the object. The accuracy of the
best of the 5 masks obtained for each object (normal-
ized for foreground and background) was found to be
80.2%. The best automatic accuracy we obtain with
the machine is 78.8% using the distance transform
approach (refer to the supplementary material), not
much worse than the human subjects’ accuracy. This
shows that humans can not decipher the shape of
an object from the UCM segment boundaries much
better than an automatic approach. Clearly, the UCM
segment boundaries are not any more informative to
humans than they are to machines.

5.5 Scene and scene-class co-occurrence

Machine: We train a classifier [2] to predict each of the
scene types, and use its confidence to form the uni-
tary potential for the scene variable. The scene node
connects to each binary class variable zi via a pairwise
potential which is defined based on the co-occurrence
statistics of the training data, i.e., likelihood of each
class being present for each scene type.
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Fig. 7: Human scene classification. Subjects were
shown images at multiple resolutions. Subjects were
asked to choose the scene category for each image.

Fig. 8: Average scenes for some example scene cate-
gories in MSRC.

Human: To obtain scene unary, we ask human sub-
jects to classify an image into one of the 21 scene
categories used in [7] (see Table 1). Images were pre-
sented at varying resolutions (i.e., original resolution,
smallest dimension rescaled to 32, 24 and 20 pixels)
as shown in Figure 7. Subjects were allowed to select
more than one category when confused, and the po-
tential was computed as the proportion of responses
each category got. Human accuracy at scene recogni-
tion was 90.4, 89.8, 86.8 and 85.3% for the different
resolutions, as compared to the machine accuracy of
81.8%. Note that human performance is not 100% even
with full resolution images because the scene cate-
gories are semantically ambiguous. Humans clearly
outperform the machine at scene recognition, but the
question of interest is whether this will translate to
improved performance for scene understanding.

Similar to the class-class experiment, to obtain
scene-class co-occurrence statistics, subjects were
asked which object category is more likely to be
present in the scene. We “show” the scene either
by naming its category (no visual information), or
by showing them the average image for that scene
category3. Examples are shown in Figure 8. The nor-
malized co-occurrence matrix is then used as the
pairwise potential.

5.6 Ground truth Potentials

In addition to human potentials (which provide a
lower-bound), we are also interested in establishing
an upper-bound on the effect each subtask can have
on segmentation performance by introducing ground
truth (GT) potentials into the model. We formed each
potential using the dataset annotations. For segments
and super-segments we simply set the value of the
potential to be 1 for the segment GT label and 0 oth-
erwise, similarly for scene and class unary potentials.
For object detection, we used the GT boxes as the
candidates and set their detection scores to 1. For

3. When asked to look at the average images and recognize the
scene category, subjects were 80% accurate.

the shape prior, we use a binary mask that indicates
which pixels inside the GT object bounding box have
the object’s label.

Note that in theory, some other settings of the
variables in the model might produce better results
than using ground truth. Therefore, using the ground
truth information for each sub-task might not result
in a strict upper-bound.

6 EXPERIMENTS WITH CRFS

We now describe the results of inserting the human
potentials in the CRF model. We also investigated
how plugging in GT potentials or discarding certain
tasks all together affects performance on the MSRC
dataset. For meaningful comparisons, CRF learning
and inference is performed every time a potential is
replaced, be it with (i) Human or (ii) Machine or (iii)
GT or (iv) Remove.

A summary of the results for the four different
settings is shown in Figure 9. Note that in each exper-
iment only a single machine potential was replaced,
which is indicated in the x axis of the plots. Missing
bars for the remove setting indicate that removing
the corresponding potential would result in the CRF
being disconnected, and hence that experiment was
not performed. GT is not meaningful for pairwise
potentials. The average over all categories is shown
on the y axis.

There are several interesting trends. Having GT
information for class presence (i.e. knowing which
objects are present in the image) clearly helps scene
recognition (Figure 9(b)-last column), but also gives
a noticeable boost to object detection (Figure 9(c)-
last column) and segmentation (Figure 9(a)-last col-
umn). This argues in favor of informative classifiers
for class presence, which were not used in the cur-
rent model [7], but is, e.g., done in [21]. Class-class
co-occurrence potential and the scene-class potential
have negligible impact on the performance of all three
tasks (5th and 7th columns in Figures 9(a), 9(b), and
9(c)). The choice of the scene classifier has little impact
on the segmentation but influences detection accuracy
(3rd column in Figures 9(a) and 9(c)). We find that
human object detection boosts performance, which
is not surprising (8th column in Figures 9(a), 9(b),
and9(c)). GT shape also improves segmentation per-
formance (Figure 9(a)-4th column), but as discussed
earlier, we find that humans are unable to instantiate
this potential using the UCM segment boundaries.
This makes it unclear what the realizable potential of
shape is for the MSRC dataset.

One human potential that does improve perfor-
mance is the unitary segment potential (1st column
in Figures 9(a), 9(b), 9(c)). This is quite striking since
human labeling accuracy of segments was substan-
tially worse than machine’s (72.2% obtained by look-
ing only at the segment pixels vs. 77.4% obtained
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Fig. 9: Impact of each component on machine scene understanding. Here we show the semantic segmentation, object
detection, and scene recognition accuracies when a single component of the model is changed (removed, implemented
by a machine (default), replaced by a human or replaced with ground truth). The evaluation measures are average
per-class recall, Average Precision (AP), and average recall for segmentation, object detection, and scene recognition
respectively.

by the classifier, refer to Table 3), but incorporating
the potential in the model significantly boosts perfor-
mance (e.g., from 77.2% to 82.3% for the segmentation
task). Note that for these experiments we use 200x200
windows for TextonBoost since it corresponds to the
common practice in the literature, and allows us to
match the set up in [7].

Intrigued by this, we performed a detailed analysis
to identify properties of the human potential that
are leading to this boost in performance. Resultant
insights provided us concrete guidance to improve
machine potentials and hence significantly better ac-
curacies. This study is performed for the segmentation
task.

6.1 Analysis of segments in MSRC

We now describe the various hypotheses we explored
including unsuccessful and successful ones to explain
the boost in the segmentation task provided by hu-
man segment potentials.
Scale: We noticed that the machine did not have
access to the scale of the segments while humans
did. So we added a feature that captured the size
of a segment relative to the image and re-trained the
unary machine potentials. The resulting segmentation
accuracy of the CRF was 75.2%, unfortunately worse
than the original accuracy at 77.2%.
Over-fitting: The machine segment unaries are trained
on the same images as the CRF parameters, poten-
tially leading to over-fitting. Humans obviously do

not suffer from such biases. To alleviate any over-
fitting in the machine model, we divided the train-
ing data into 10 partitions. We trained the machine
unaries on 9 parts, and evaluated them on the 10th

part, repeating this 10 times. This gives us machine
unaries on the entire training set, which can be used to
train the CRF parameters. While the machine unaries
may not be exactly calibrated, since the training splits
are different by a small fraction of the images, we do
not expect this to be a significant issue. The resultant
accuracy was 76.5%, again, not an improvement.

Ranking of the correct label: It is clear that the high-
est ranked label of the human potential is wrong more
often than the highest ranked label of the machine
potential (hence the lower accuracy of the former
outside the model). But we wondered if perhaps even
when wrong, the human potential gave a high enough
score to the correct label making it revivable when
used in the CRF, while the machine was more “bla-
tantly” wrong. We found that among the misclassified
segments, the rank of the correct label using human
potentials was 4.59 – not so different from 6.19 (out of
21) by the machine. Therefore, the rank of the correct
label in human responses cannot explain the boost.

Uniform potentials for small segments: Recall that
we did not have human subjects label the segments
smaller than 500 pixels and assigned a uniform poten-
tial to those segments. The machine on the other hand
produced a potential for each segment. We suspected
that ignoring the small (likely to be misclassified)
segments may give the human potential an advantage
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segments. Humans are generally better at recognizing
stuff, while machines are better at things recognition.
Larger segments are generally easier to recognize.
Note that in this experiment, Humans see only the
segment pixels, while the machine classifier incorpo-
rates the information from the neighboring regions of
the segments.

in the model. So we replaced the machine potentials
for small segments with a uniform distribution over
the categories. The average accuracy unfortunately
dropped to 76.5%. As a follow-up, we also weighted
the machine potentials by the size of the correspond-
ing segment. The segmentation accuracy was still
77.1%, similar to the original 77.2%.
Regressing to human potentials: We then attempted
to directly regress from the machine potential as
well as the segment features (TextonBoost, LBP, SIFT,
ColorSIFT, location and scale) to the human potential,
with the hope that if for each segment, we can predict
the human potential, we may be able to reproduce
the high performance. We used Gaussian Process re-
gression with an RBF kernel. The average accuracy in
both cases was lower: 75.6% and 76.5%. We also repli-
cated the sparsity of human potentials in the machine
potentials, but this did not improve performance by
much (77.3%).
Complementarity: To get a deeper understanding
as to why human segment potentials significantly
increase performance when used in the model, we
performed a variety of additional hybrid CRF exper-
iments. These included having human or machine
potentials for segments or super-segments or both,
with or without the Pn potential in the model. The
results are shown in Table 2. The last two rows cor-
respond to the case where both human and machine
segment potentials are used together at the same level.
In this case, using a Pn potential or not has little
impact on the accuracy. But when the human and
machine potentials are placed at different levels (recall
that we have segments and super-segments at two
different levels as shown in Fig. 1) in the model (rows
3 and 4), not having a Pn potential (and thus loos-

Pn without Pn

Human Seg., Human Super-seg. 78.9 77.2
Machine Seg., Machine Super-seg. 77.2 77.0
Human Seg., Machine Super-seg. 82.3 75.3
Machine Seg., Human Super-seg. 81.2 78.2

Human Seg. + Machine Seg., Machine Super-seg. 80.9 81.3
Human Seg. + Machine Seg., Human Super-seg. 82.3 82.8

TABLE 2: Human and machine segment potentials are
complementary. The last two rows correspond to the
case where both human and machine segment poten-
tials are used together at the same level. In this case,
using a Pn potential or not has little impact on the
accuracy. But when the human and machine potentials
are placed at different levels in the model (rows 3
and 4), not having a Pn potential (and thus loosing
connection between the two levels) significantly hurts
performance. This indicates that even though human
potentials are not significantly more accurate than
machine potentials, when both human and machine
potentials interact, there is a significant boost in per-
formance, demonstrating the complimentary nature of
the two.

ing connection between the two levels) significantly
hurts performance. This indicates that even though
human potentials are not more accurate than machine
potentials (obtained from a classifier that uses 200x200
windows), when both human and machine potentials
interact, there is a significant boost in performance,
demonstrating the complementary nature of the two.

Therefore, we hypothesized that the types of mis-
takes that the machine and humans make may be
different. Our initial analysis showed that humans are
generally better at detecting stuff while machine is
better recognizing things (Figure 10).

Additionally, we qualitatively analyzed the confu-
sion matrices for both (Figure 11). We noticed that the
machine with 200x200 windows confuses categories
that spatially surround each other e.g., bird and grass
or car and road. This was also observed in [35]. This
is understandable since a large window surrounding
a pixel is used to generate its feature descriptor. On
the other hand, human mistakes are between visually
similar categories e.g., car and boat.

We also analyzed the correlation of the mistakes
within a super-segment and noticed that mistakes
made within a super-segment are consistent for ma-
chines but variable for humans. Specifically, on av-
erage machine assigns different labels to 4.9% of
segments, while humans assign different labels to
12% of the segments within a super-segment. This
indicates that machine mistakes are structured and
correlated so it may be harder for other components
in the CRF to recover from these mistakes. Addi-
tionally, we analyzed the weights of the CRF to see
what components become more effective when we
use human segment potentials. We observed that the
weight for the segment classification potential is lower
for the case that we use human segment potentials.
However, the weight for supersegment classification
and Pn potential (which connects the supersegments
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Fig. 11: The confusion matrices for segment classification are shown. For machine with large window size (a), there
is high confusion between classes appearing in the surrounding area of each other, for example, bird-grass, car-road,
etc. The types of mistakes are different for humans (b). They confused objects that look similar, for instance, there
is confusion between cat-cow or boat-aeroplane. When we reduce the window size for machine (c), the mistakes
become more similar to the human mistakes. Combining the small-window machine potentials with the large-window
machine potentials results in a significant improvement in segmentation accuracy.

200×200 10×10 20×20 30×30 40×40 Humans
in isolation 77.2 66.3 70.8 75.6 77.2 72.2
inside CRF 77.2 77.9 78.5 79.6 79.6 82.3

TABLE 3: Segmentation accuracy obtained by humans
and by resizing TextonBoost window size outside the
model (in isolation) and inside the CRF model. Note
that, in the first row, the accuracy corresponds to
segments larger than 500 pixels, while the second row
shows the result for all segments.

to segments) increases significantly. This shows that in
cases that the errors are decorrelated within a super-
segment, smoothness terms become more effective.

One factor in the machine classifier that controls
the correlation of classification mistakes of nearby
segments is the TextonBoost window size. Our hy-
pothesis is that as the window size decreases, the
errors become less correlated, hence, we should ob-
serve more similar pattern of mistakes to human
mistakes. Therefore, we plugged segment unaries that
are computed based on small windows (as explained
in Section 5.1) into the model. The average accuracy
using window sizes of 10, 20, 30 and 40 are shown in
the second row of Table 3. The accuracy outside the
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model is shown in the first row of Table 3. Note that
segment unaries computed based on 30x30 windows
provide 2.4% improvement over [7] 4. Notice that the
improvement provided by the entire CRF model over
the original machine unaries alone was 3% (from 74.2%
to 77.2%). While a fairly straightforward change in the
training of machine unaries leads to this improvement
in performance, we note that the insight to do so was
provided by our use of humans to “debug” the model.

6.2 Analysis of Segment Classification in PAS-
CAL
PASCAL VOC dataset is labeled only with 20
“things”, making it uninteresting for scene under-
standing. Hence, we used our new dataset [10] that
augments PASCAL VOC 2010 with annotations for
400+ additional classes. To perform the experiments
in this section, we used 14 additional classes (shown
in Table 4) that appear frequently at the immediate
surrounding of the original 20 object classes. We used
∼650 images for training the machine classifier and
tested the learned classifier on ∼200 random images
from the validation set. We used the same MTurk
setup as Figure 2 to carry out the human experiments
on these 200 images.

Additional PASCAL classes
sky grass ground road building tree water

mountain wall floor railroad keyboard door ceiling

TABLE 4: Additional categories used for segment clas-
sification in PASCAL VOC.

For classification, we used the method of [42]. The
only difference is that we use patches of different sizes
as the input to the classifier instead of their CPMC
segments. We use square patches to be consistent with
TextonBoost that was used for MSRC. The reason that
we did not use TextonBoost for this experiment is
that it does not scale well to larger number of images
and categories. The patches are centered at the center
of superpixels so there is a patch associated to each
superpixel. We used 30x30 and 100x100 patches for
our experiments. The confusion matrices are shown in
the supplementary document due to space limitation.

A similar pattern of confusion exists in the PAS-
CAL dataset. For example, for humans, there is con-
fusion between aeroplane and semantically similar
categories such as car and train, while the machine
confuses aeroplane with sky or road that appear
at immediate surroundings of aeroplanes and the
confusion with car or train is negligible. Therefore,
the types of machine and human mistakes are dif-
ferent for PASCAL dataset as well. Also, similar to
the MSRC case, as we decrease the patch size, the
machine error becomes more similar to the human

4. Adding a new unary potential simply by incorporating a
different set of features and kernels than Textonboost (such as color,
SIFT and self-similarity with intersection kernel) provides only a
small boost at best (77.9%).

case. For instance, there is 31% confusion between
boat and building when we use 100x100 patches,
but when we reduce the patch size, the confusion
becomes 51% (closer to 62% for humans). To quantify
this, we computed the symmetric Kullback-Leibler
(KL) distance between the corresponding rows of the
confusion matrices and summed over the distances
between the rows. The distance between Human and
Machine 100x100 is 294.35 while it is 256.25 between
Human and Machine 30x30. We see that the Machine
30x30 makes more human-like mistakes than Machine
100x100. Similarly, for MSRC, the distance between
human and machine with large window was larger
than human and machine with small window (151.2
vs. 63.8).

The accuracy for Machine with 100x100 patches is
28.1% and for human is 50.7%. To show that human
and machine mistakes are complementary, we used
an oracle that picked the segment label provided
by humans if machine made a mistake. The pixel-
wise accuracy of this approach is 56.5%, which is
higher than both human and machine accuracies and
shows the complementary nature of the mistakes.
Designing machine potentials that make human-like
mistakes may improve machine performance, as we
demonstrated on the MSRC dataset in Section 6.1.
Note that these experiments are independent of the
system in [7].

We also performed an experiment to see if similar
trends exist for the case that just like humans, machine
also has access only to segment pixels (as opposed to
a square patch that might include pixels outside the
segment). We trained the machine classifier (similar as
above) with all training images in [10] and evaluated
the classifier on the same 200 images we used above.
The average accuracy we obtained was 51.7%. As
mentioned above, the accuracy for humans is 50.7%.
Again, we used an oracle to choose the label chosen
by humans whenever machine makes a mistake. The
performance increased to 71.8%, which indicates the
human and machine mistakes are complementary
in this case too and the same trends as the above
experiments exist.

7 ANALYZING THE PIPELINE

In this section, we analyze the scene understanding
CRF model using the MSRC dataset. First, we in-
vestigate whether the components used in the model
are beneficial for humans. Second, we estimate the
potential that the model as a whole holds for all the
three tasks. Note that the components that [7] use, e.g.,
segment classifier, object detector, etc., are common
among most scene understanding approaches (e.g.,
[32], [43], [44], etc). So it is conceivable that our con-
clusions may generalize to other scene understanding
approaches. However, we only analyze [7], and have
not tested the generality of our conclusions to other
pipelines.
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7.1 Contextual Image Labeling
To study if humans benefit from contextual informa-
tion provided by the model in order to recognize local
regions, we design an experiment where, in addition
to the segment pixels, we show subjects progressively
more information from the model: presence / absence
of each class, object bounding boxes, shape prior
masks and scene type. We selected 50 random seg-
ments of any size from each category and asked the
subjects to classify each segment. Figure 12 shows an
example for each of the interfaces used for this study.
From left to right (b – e), the contextual information
available to the subjects is increased.

The results are shown in Table 5. We see that human
performance in the task of image labeling significantly
increases when presented with the same contextual
information used by machine models. We also show
accuracies of the machine model when given access to
precisely the same information as shown to humans.
We find that humans can effectively leverage the
available information. Even though human perfor-
mance is worse than machines when viewing seg-
ments in isolation, they outperform the machine when
given access to the contextual information modeled by
the CRF. This is especially true for “things”. Access to
context seem to confuse human responses for “stuff”.
Investigating this further is part of future work.

7.2 Journey to Perfection
To analyze if the model has the potential to reach
perfection, we conduct experiments using different
combinations of machine, human, and ground truth
potentials. Figure 13 provides a journey on the seg-
mentation task from the machine’s current 77% per-
formance to perfection. We find that incorporating
human (H) segment (S) potentials improves perfor-
mance by 5-6%. Incorporating ground truth (GT)
detection (Det) provides an improvement of 4-7%.
Adding in GT for remaining tasks (except super-
segments (SS)) further improves performance by 2-
5%. These combined bring us to 92%. GT segments
plugged into the model perform at 94.2%, which
outside the model are at 94.5% (the upper-bound on
the performance of the model since it makes segment-
level decisions). This shows that as far as segmen-
tation goes the model itself is sufficient and all the
required tasks are being modeled. This analysis also
provides concrete guidance for future research efforts:
designing representations complementary to the ones

used in the model, perhaps by mimicking human
responses, has potential for significant improvement.
And of course, improving on all the tasks would
lead to more effective scene understanding. Note that,
holistically accurate systems do not require extremely
high performance on each sub-task to achieve high
performance.

Figure 14 shows the effect of each component on the
object detection task. The machine’s average precision
is 46.8. Including the ground truth information for
class presence (CP) improves the average precision
to 52.5 (5.7 improvement in AP). Incorporating hu-
man segment (S) and super-segment (SS) potentials
provides an additional improvement of 1.1 AP, which
leads to 53.6 AP. Ground truth shape information also
provides improvement for the object detection task,
and increases the AP to 54.3. Including the ground
truth scene has negligible impact on performance. If
we replace the human segment and super-segment
potentials by their ground truth counterparts, the av-
erage precision decreases to 54.0. Hence, ground truth
class-presence (knowing whether a certain category
exists in the image or not similar to the image classi-
fication task in PASCAL) is the single component that
provides the biggest boost in performance. Obviously,
using ground truth information for object detection
has a significant effect on the performance, where it
improves the AP to 93.9. Hence, given the scope of
this model, the burden of improving the detection
performance from 54.3 to 93.9 lies on the detector
itself. Enhancing the model with additional cues such
as a rough 3D layout of the scene, etc. that directly
influence likely locations and scales of detections may
be important to aid the detector.

The journey for scene recognition is shown in Fig-
ure 15. The machine performance for scene recog-
nition is 81.0%. Using ground truth shape potential
improves the performance by 2.2%. Using ground
truth detection (Det), segment (S) and super-segment
(SS) potentials instead provides 9.3% boost in accu-
racy. Adding ground truth shape to this combination
does not change the accuracy. Using ground truth
class-presence single-handedly takes the performance
to 93.5% (an improvement of 12.5%, while ground
truth scene information is at 94.0%). This is because
the scene categories in this dataset as defined in
Table 1 are object-category centric, and hence knowing
whether a certain object-category is present in an
image or not provides strong cues about the scene
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Humans
Segm. (S) 48 82 38 20 14 64 18 60 50 22 12 58 44 8 20 16 36 0 6 22 6 30.7 54.7 21.1
(b) S+label 78 84 54 86 82 58 64 62 72 50 72 90 92 88 90 90 52 92 82 58 70 74.6 64.7 78.5
(c) S+box (B) 58 72 38 100 98 44 100 54 82 96 94 100 96 96 98 96 46 100 98 92 98 83.6 52.0 96.3
(d) S+B+msk 58 72 44 100 100 42 100 54 98 98 94 100 96 94 98 98 36 100 98 96 100 84.6 51.0 98.0
(e) Full info. 68 78 48 98 100 50 100 66 100 98 94 100 96 94 98 98 46 100 98 90 100 86.7 59.3 97.6

Machine model
Segm. (S) 82 86 93 74 94 96 84 88 96 70 90 88 80 6 97 30 92 95 51 34 0 72.7 89.5 65.9
S+label 83 87 93 76 92 97 87 92 96 73 100 98 80 42 97 54 93 96 70 33 0 78.2 90.8 72.9
S+box (B) 83 87 93 86 96 97 90 92 96 82 100 100 87 44 100 61 93 96 71 35 55 82.9 90.8 79.9
S+B+msk 84 87 93 86 98 97 90 92 97 82 100 100 87 44 100 61 93 96 71 42 75 84.3 91.0 81.9
Full info. 84 87 93 86 98 97 90 92 96 82 100 100 87 44 100 61 93 96 71 42 75 84.4 91.0 81.9

TABLE 5: Human segmentation accuracies with increasing information from the model. The letters in the first column
of the Human experiment correspond to the letters in Fig. 12.
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Fig. 13: Journey to perfection for segmentation.
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Fig. 14: Journey to perfection for object detection.
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Fig. 15: Journey to perfection for scene classification.

8 CONCLUSION
Researchers have developed sophisticated machinery
for scene understanding. Insights into which aspects
of these models are crucial, especially for further
improving state-of-the-art performance is valuable.
We gather these insights by analyzing a CRF model
for scene understanding.

Our analysis hinges on the use of human subjects
to produce the different potentials in the model.
Comparing performance of various human-machine
hybrid models allows us to identify the components of
the model that still have “head room” for improving

performance. One of our findings was that human
responses to local segments in isolation, while being
less accurate than machines’, provide complementary
information that the CRF model can effectively ex-
ploit. We showed that a similar pattern of mistakes
happens for the more difficult PASCAL dataset. We
explored various avenues to precisely characterize
this complementary nature. We also investigated dif-
ferent shape priors for the model, and it turned
out that human subjects can not decipher the object
shape from super-pixel boundaries any better than
machines. In addition, we showed that humans can
effectively leverage the contextual information incor-
porated in the machine model.

We expect even more insightful findings if this
model is studied on larger and more challenging
datasets, which is part of future work.
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