Relative Attributes

Devi Parikh (TTIC) and Kristen Grauman (UT Austin)

1. Main Idea

2. Learning Relative Attributes

Max-margin learning to rank formulation

3. Ranking Function vs. Binary Classifier Score

s.t $\mathbf{w}_{m}^{T}(\mathbf{x}_{i} - \mathbf{x}_{j}) \ge 1 - \xi_{ij}, \forall (i, j) \in O_{m}$ $|\mathbf{w}_{m}^{T}(\mathbf{x}_{i} - \mathbf{x}_{j})| \le \gamma_{ij}, \forall (i, j) \in S_{m}$ $\xi_{ij} \ge 0; \gamma_{ij} \ge 0$

 $\left(\frac{1}{2}||\boldsymbol{w}_{\boldsymbol{m}}^T||_2^2 + C\left(\sum \xi_{ij}^2 + \sum \gamma_{ij}^2\right)\right)$

For each attribute a_m , Supervision is O_m : $\{(\bigcirc \succ) \}$, S_m : $\{\{ \bigcirc \leftarrow \} \}$

Learn a scoring function $r_m(m{x_i}) = m{w_m}^T m{x_i}$ that best satisfies constraints:

 $\forall (i,j) \in O_m : oldsymbol{w}_{oldsymbol{m}}^T oldsymbol{x_i} > oldsymbol{w}_{oldsymbol{m}}^T oldsymbol{x_j} \qquad orall (i,j) \in S_m : oldsymbol{w}_{oldsymbol{m}}^T oldsymbol{x_i} = oldsymbol{w}_{oldsymbol{m}}^T oldsymbol{x_j}$

Motivation:

Categorical (binary) attributes are restrictive and can be unnatural

Natural

Not Smiling

Proposed idea: Relative Attributes

- and machines
- ♦ Describe images or categories relatively e.g. "dogs are furrier than giraffes"
- "find less congested downtown Chicago scene than

↓ Learn a ranking function for each attribute

Enables new applications

- ♦ Novel zero-shot learning from attribute comparisons
- ♦ Precise automatically generated textual descriptions of images

Based on

[Joachims, 2002]

67%

Ranker

89%

82%

4. Relative Zero-shot Learning

Learnt relative attributes

Teaching novel

concepts simply by

relating them to

known concepts!

Number of unseen categories

8. Zero-shot Learning Results

Baselines:

An attribute is more discriminative when used relatively

Quality of description Looseness of constraints Looseness of constraints Relative attributes jointly carve out space for unseen

9. Contributions

- **♦** Relative attributes
- ♦ Richer semantic communication between humans and machines
- ♦ Novel applications: zero-shot learning via comparisons and automatic relative image description

Data available online!

http://ttic.uchicago.edu/~dparikh/ relative.html

Relative attributes space **Unseen categories** Age: Hugh >- Clive >- Scarlett

 \diamond Testing: Categorize image into one of N (=S+U) categories (max-likelihood)

♦ Training: Images from S seen categories and descriptions of U unseen categories

Jared > Miley

Smiling: Miley ➤ Jared

- ♦ Need not use all attributes
- ♦ Need not relate to all S seen categories

5. Describing Images Relatively

Learnt relative attributes

Density

Density:

Auto - generate textual description of: 1/8 dataset Relative attributes space

Relative description:

"more dense than , less dense than

"not dense" Not dense: Dense:

Conventional binary description:

top choices

18 subjects

30 test cases

Human study

7. Image Description Results

Example descriptions

Binary descriptions more natural than tallbuilding; less natural than forest; more open than tallbuilding; les not natural, not open, perspective open than coast; more perspective than tallbuilding nore natural than insidecity; less natural than highway; more open than street; less open than coast; more perspective than highway; less perspective than insidecity perspective more natural than tallbuilding; less natural than mountain; more open than mountain; natural, open, less perspective than opencountry; perspective White, not Smiling, ore White than AlexRodriguez; more Smiling than JaredLeto; less Smiling than ZacEfron; VisibleForehead more VisibleForehead than JaredLeto; less VisibleForehead than MileyCyrus more White than AlexRodriguez; less White than MileyCyrus; less Smiling than White, not Smiling, not VisibleForehead HughLaurie; more VisibleForehead than ZacEfron; less VisibleForehead than MileyCyrus more Young than CliveOwen; less Young than ScarlettJohansson; more BushyEyebrows not Young, than ZacEfron; less BushyEyebrows than AlexRodriguez; more RoundFace than CliveOwen BushyEyebrows, RoundFace less RoundFace than ZacEfron

Binary: Smiling, not VisibleForehead

Which image is...?

Relative:

More Smiling than More VisibleForehead than

6. Datasets Outdoor Scene Recognition (OSR):

2688 images, 8 categories: coast (C) forest (F), highway (H), inside-city (I mountain (M), open-country (O), street (S) and tall-building (T), gist features

How do learned

ranking functions

differ from classifier

outputs?

Public Figure Face (PubFig): 772 images, 8 categories: Alex Rodriguez (A), Clive Owen (C), Hugh Laurie (H) Jared Leto (J), Miley Cyrus (M), Scarlett Johansson (S), Viggo Mortensen (V) and Zac Efron (Z), gist and color features

		Binary	Relative
),),	OSR	TISHCOMF	
	natural	00001111	$T \prec I \sim S \prec H \prec C \sim O \sim M \sim F$
	open	00011110	$T\sim F \prec I\sim S \prec M \prec H\sim C\sim O$
	perspective	$1\ 1\ 1\ 1\ 0\ 0\ 0\ 0$	$O \prec C \prec M \sim F \prec H \prec I \prec S \prec T$
	large-objects	$1\ 1\ 1\ 0\ 0\ 0\ 0\ 0$	$F \prec O \sim M \prec I \sim S \prec H \sim C \prec T$
	diagonal-plane	11110000	$F \prec O \sim M \prec C \prec I \sim S \prec H \prec T$
	close-depth	11110001	$C \prec M \prec O \prec T \sim I \sim S \sim H \sim F$
Ì	PubFig	ACHJ MS V Z	
z ,	Masculine-looking	11110011	$S \prec M \prec Z \prec V \prec J \prec A \prec H \prec C$
	White	01111111	$A \prec C \prec H \prec Z \prec J \prec S \prec M \prec V$
	Young	00001101	$V \prec H \prec C \prec J \prec A \prec S \prec Z \prec M$
	Smiling	11101101	$J \prec V \prec H \prec A \sim C \prec S \sim Z \prec M$
	Chubby	10000000	$V \prec J \prec H \prec C \prec Z \prec M \prec S \prec A$
	Visible-forehead	11101110	$J \prec Z \prec M \prec S \prec A \sim C \sim H \sim V$
st	Bushy-eyebrows	01010000	$M \prec S \prec Z \prec V \prec H \prec A \prec C \prec J$
	Narrow-eyes	01100011	$M \prec J \prec S \prec A \prec H \prec C \prec V \prec Z$
	Pointy-nose	00100001	$A \prec C \prec J \sim M \sim V \prec S \prec Z \prec H$
	Big-lips	10001100	$H \prec J \prec V \prec Z \prec C \prec M \prec A \prec S$
	Round-face	10001100	$H \prec V \prec J \prec C \prec Z \prec A \prec S \prec M$
•			

% correctly ordered pairs | Classifier

Outdoor scenes

Celebrity faces

Not Smiling