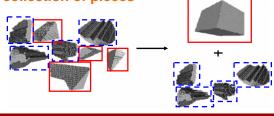
Feature-Based Part Retrieval for Interactive 3D Reassembly

Devi Parikh¹, Rahul Sukthankar^{2,1}, Tsuhan Chen¹, Mei Chen²


¹Carnegie Mellon University, ²Intel Research Pittsburgh

Motivation

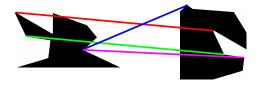
- Archeology Reconstruct broken artifacts
- Molecular Biology Identify compatible proteins
- Forensics
 Understand disaster scene

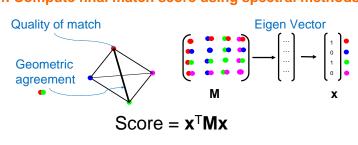
Goal

Help user to reconstruct 3D object from a large collection of pieces

Approach

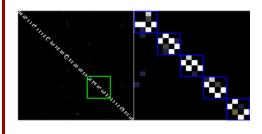
1. Detect interest regions and compute local descriptors

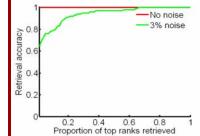



2. Identify candidate descriptor correspondences

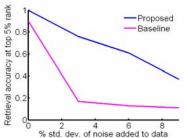
3. Quantify geometric compatibility between parts

4. Compute final match score using spectral methods


Motivated by [Leordeanu & Hebert, 2005]


Results

Database of solid objects, each broken into four pieces



System correctly identifies the pieces for each object

- 100 piece database
- High retrieval accuracy at low ranks
- Robust to noise

- Accuracy at low ranks is crucial metric to evaluate retrieval
- Significantly outperforms baseline at varying noise levels