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Abstract

Detecting people remains a popular and challenging
problem in computer vision. In this paper, we analyze
parts-based models for person detection to determine which
components of their pipeline could benefit the most if im-
proved. We accomplish this task by studying numerous de-
tectors formed from combinations of components performed
by human subjects and machines. The parts-based model
we study can be roughly broken into four components: fea-
ture detection, part detection, spatial part scoring and con-
textual reasoning including non-maximal suppression. Our
experiments conclude that part detection is the weakest link
for challenging person detection datasets. Non-maximal
suppression and context can also significantly boost per-
formance. However, the use of human or machine spatial
models does not significantly or consistently affect detec-
tion accuracy.

1. Introduction
Object detection remains an open and challenging prob-

lem in computer vision. Historically, the subclass of detect-
ing people has attracted increased attention given its impor-
tance to many real world applications, and its challenging
level of difficulty. The wide variety of poses and shapes
people exhibit, along with variations in clothing, creates a
very challenging task for modeling and learning algorithms.

Recently, person detectors have made significant
progress using part-based models. The appearance of each
part such as a person’s head, foot, or torso are represented
by Histograms of Gradients (HoG) [5, 13], color [7] or Harr
wavelets [8]. The spatial relationships of object parts can
be represented using trees [13], k-fans [4] or constellation
models [15]. Each of these approaches propose a complex
set of interdependent components to provide final detection
results. While the additional complexity of the approaches
have led to increased performance, understanding the role
of each component in the final detection accuracy is diffi-
cult.

In this paper, we propose a thorough analysis of parts-
based models to gain insight into which components of the
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Figure 1: In order to gain insight into which components of a parts-
based person detector could benefit the most if improved, we replace each
component, i.e., part detection (P), feature extract (F), spatial modeling
(SM) and non-maxima-suppresion (NMS) in the pipeline with human sub-
jects (green bars). Here we illustrate the various tasks performed by human
subjects via example input/output pairs.

pipeline could benefit the most if improved. We accomplish
this task by using human subjects to perform the individ-
ual components previously performed by the machine al-
gorithm. For instance, instead of using a machine classifier
such as a latent SVM trained on HoG descriptors [13] to de-
tect object parts, we use human subjects to label whether a
small image patch contains a human’s head, foot, torso etc.

A parts-based detector can be roughly broken into four
components: feature detection, part detection, spatial part
scoring and contextual reasoning including non-maximal
suppression. We combine numerous human and machine
performed components to form complete person detectors
and recognizers. The results indicate which components
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lead to the greatest increase in accuracy over the standard
machine approach. The experiments include the use of var-
ious feature types such as color, edges, and intensities for
both detecting people and parts, the use of human detected
parts with a machine spatial model, and machine detected
parts with using a human’s spatial model. Other experi-
ments analyzing non-maximal suppression techniques and
contextual information are also performed.

2. Related Work

We now discuss some existing techniques for person de-
tection, as well works that conduct human studies to gain
insights in computer vision. We comprehensively discuss
works on parts, spatial models and contextual models in
Section 3.

Person/Pedestrian detection: Given the importance of
detecting people in images, numerous detectors have been
proposed. A comparison of several approaches for pedes-
trian detection can be found in Dollar et al. [9]. Wojek et al.
[44] analyzes several features and classifier types. Dalal and
Triggs [5] first proposed the locally normalized histogram
of gradients detector, which was improved upon by Felzen-
szwalb et al. [13] using deformable parts models. Increased
performance was found using numerous feature types and
boosting by Dollar et al. [7], and using multi-level features
and intersection kernel SVMs by Maji et al. [23].

Human studies: An early example of designing compu-
tational models with similar behavior to humans is shown in
David Marr’s book [25]. Liu et al. [21] conducted human
studies demonstrating that the high human performance in
3D object discrimination can only be explained if humans
are using 3D information. Tarr et al. [38] and Hinton et al.
[19] studied whether humans use mental rotation for recog-
nition and determining if shapes have the same handiness.
A comparison of human and machine algorithms for select-
ing regions-of-interest in images was conducted by Privit-
era et al. [32]. Fei-Fei et al. [11] demonstrated that human
subjects can provide a large amount of detailed information
about a scene even after viewing it for a very brief period
of time. Bachmann et al. [2] show that humans can reliably
recognize faces in images as small as 16 × 16 pixels, and
Oliva et al. [27] present similar results for scene recogni-
tion. Torralba et al. [40] and Parikh et al. [30] show that
humans can detect objects in 32 ×32 images with signifi-
cantly higher performance than state-of-the-art machine al-
gorithms using high resolution images. The work of Parikh
et al. [29] uses human studies to determine if features, clas-
sification algorithms or the amount of training data is most
likely to account for the superiority of humans over ma-
chines in recognizing objects and scenes.

3. Part-based detector
In this section, we describe machine models for various

components in a part-based detector including feature ex-
traction, parts modeling, spatial models, non-maximal sup-
pression and contextual reasoning, before we describe the
corresponding set-up for our human studies. For each stage,
we follow the approach of Felzenszwalb et al. [13] that has
shown recent state-of-the-art performance and briefly out-
line other approaches. Our studies are performed on sub-
sets of the commonly used INRIA [5] dataset, and the more
challenging PASCAL [10] dataset.

3.1. Feature extraction and modeling parts

Numerous low-level features and representations have
been proposed for modeling objects and their parts. Rep-
resentations have progressed from modeling textures [24]
to histograms of gradients with global normalization [22]
and local normalization [5]. The work of Felzenszwalb et
al. [13] improved upon [5] to reduce its dimensionality and
increase accuracy. Methods using color [7] and gradients
without histograms [34] have also been proposed. Wavelet
approaches [28, 42] have shown benefits in computational
efficiency. Several methods combine various features using
decision trees [41] or boosting techniques [7]. Represen-
tations may also be learned using random decision forests
[37], feature mining [8], deep belief nets [18], mixture mod-
els [3] or biologically inspired models [26].

In this paper, we use the part detectors of Felzenszwalb et
al. [13] trained via a latent SVM on histogram of oriented
gradient features [5]. The models were pre-trained and sup-
plied by Felzenzswalb et al. [13]. Each component of the
model contains a root filter and six part filters. While [13]
provides two component models, we only used one com-
ponent, since slightly better results were achieved using a
single component model on the datasets used in this paper.
The part detections were obtained by independently apply-
ing the part filters.

3.2. Spatial model

The spatial relationship of parts can be modeled using
several previously proposed techniques. Constellation mod-
els [15, 43] use Gaussian distributions to represent the rela-
tive positions of parts. More restrictive, but computationally
efficient methods have been proposed using tree [14, 16],
and k-fan models [4]. Tree-based deformable models called
pictorial structures [14, 17] provide both efficient detection
and learning. The 3D appearance of objects may also be
represented using multiple templates [36], aspect graphs
[31] or by linking parts from different viewpoints [35].

We use a star-graph spatial model similar to Felzen-
szwalb et al. [13]. The model assumes that the location of
the parts are independent given the location of the person.
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The locations of the parts relative to the person are modeled
via a Gaussian distribution, with mean and co-variance pa-
rameters (µi,Σi) for the ith part. All co-ordinates are nor-
malized with respect to the hypothesized size of the person.
Each person candidate window is scored as:

s =
K∑
i=1

max
x,y

si(x, y) (1)

where K is the number of parts in the model, and si is the
score associated with part i at location (x, y):

si(x, y) =

ŝi(x, y)− (ai∆x+ bi∆y + ci(∆x)2 + di(∆y)2) (2)

where ŝi(x, y) is the score of the ithpart detector at loca-
tion (x, y), and ∆x and ∆y are the positional offsets from
the part’s mean position. The coefficients {ai, bi, ci, di},
which model the covariance, are learnt discriminatively via
a linear-SVM to distinguish positive windows across the
training dataset (with > 50% overlap with a ground-truth
person bounding-box) from the negative windows (with <
50% overlap with a ground-truth person bounding-box).
The mean parameters of the star-graph µi are learnt through
maximum likelihood estimation over the positive training
windows using part detections that maximize si(x, y). With
the newly estimated mean parameters, a new set of covari-
ance coefficients {ai, bi, ci, di} are learnt, resulting in an
iterative learning procedure.

We initialize µi as the weighted mean of the part detec-
tions within the ground-truth person bounding-boxes in the
training images. The weights correspond to the part detec-
tion scores. The coefficients {ai, bi, ci, di} are initialized to
{0, 0, 0.3, 0.3}.

3.3. Context and non-maximal suppression

Recently, the use of context has received significant at-
tention for object recognition and detection. Context pro-
vides a useful aid for determining likely positions of objects
using scene information [39] or the location of other objects
[20]. Pairwise interactions of objects can be modeled using
CRFs [30, 33] or as a max-margin learning problem [6, 13].

The related problem of Non-Maximal Suppression
(NMS) attempts to remove redundant detections of the same
object. This can be viewed as contextual information shared
between objects of the same class, i.e. two of the same ob-
ject cannot typically occupy overlapping areas of the im-
age. In fact, some approaches inherently solve NMS in their
multi-object contextual models [6].

In this paper, we only use NMS and not more complex
contextual models, as the performance gains provided by
the complex models were minimal [6, 13] on the PASCAL
dataset. We performed NMS by removing windows that

overlapped with a higher scoring window. Overlap is com-
puted as the ratio of the intersection and union of the two
windows. We used an overlap threshold of 0.3.

4. Experimental setups for human studies

Our experiments involve replacing various components
of the person-detector pipeline with human subjects. In
this section, we describe the techniques we employ. The
green bars in Figure 1 illustrate the various human studies
we performed. For human testing we broke the pipeline
into four stages; feature extraction, part detection, spatial
modeling and NMS/context. There are 10 possible combi-
nations of contiguous stages that the human could perform,
of which we test 8. We do not perform the feature extrac-
tion stage alone, since we cannot get direct access to the
features extracted by the human brain for further process-
ing with a machine. In addition, we do not perform the
NMS/context stage alone. All our human studies were per-
formed on Amazon Mechanical Turk.

Our experiments were conducted on 50 INRIA and 100
PASCAL 2007 images containing 132 and 139 people re-
spectively. We hand-labeled all the faces in the images,
and re-scaled the images so that the faces were a canonical
size. Fixing the scale reduces our search space making our
human studies feasible. The machine implementation [12]
with fixed scale gave an Average Precision (AP) of 0.7146
for our 50 INRIA images and 0.4625 for our 100 PASCAL
images.

4.1. Feature extraction (F)

Given a natural image, human subjects may extract any
low-level features necessary for recognition. However, if
we pre-process images to retain only some of the informa-
tion, we can constrain the low-level features accessible to
the human subjects. In our experiments, we show subjects
grey-scale images, normalized gradient images and colored
images at both high and low-resolutions. A normalized gra-
dient ĝ(x, y) at pixel (x, y) with gradient g(x, y) is com-
puted as follows:

ĝ(x, y) =
g(x, y)

ḡ(x, y) + ε
(3)

where ḡ(x, y) is a Gaussian weighted average with a stan-
dard deviation of 5, and ε = 4 is used to ensure ḡ(x, y) is
above the level of noise. For visibility, the maximum nor-
malized gradient within a patch is scaled to 255, see Figures
3 and 2 for examples. Figure 1 illustrates the settings where
human subjects use their internal feature-extractor (a,b,e) or
are constrained by machine extracted features (c,d,f).
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Figure 2: Part-detection visualizations created for human and machine detected parts.

Figure 3: Example patches classified by humans as (left to right) head,
torso, legs and background in (top to bottom) regular, grey-scale low reso-
lution and normalized gradient images.

4.2. Part detector (P)

Similar to the machine part detector, our human studies
use a sliding window approach. Overlapping small patches
are extracted from the images (Figure 1 (e, f)). Human sub-
jects were randomly shown these patches across all images,
so no contextual information was available. Subjects were
asked to classify each patch as containing a head, torso,
arm, hand, leg, foot, any other part of a person, or not a
person at all. Each patch was classified by 10 subjects. Ex-
ample patches shown to humans using color, grey-scale and
normalized gradient images are shown in Figure 3. Visu-
alizations of the detected parts aggregated across subjects
are shown in Figures 1 and 2. The different colors cor-
respond to different parts (red:head, blue:torso, green:arm,
yellow:hand, magenta:leg and cyan:feet). The intensity of
the color corresponds to the number of subjects that classi-
fied the local patch as the corresponding part. Analogous
to the detector of Felzenszwalb et al. [13], we also detect
“roots” in a similar sliding window fashion, which are low-
resolution templates of a person (shown in white in Fig-
ure 2)1.

We used root and part sizes similar to the machine im-
plementation. Specifically, for INRIA the part (patch) sizes
extracted from images were 38×38 pixels and the root (win-
dow) sizes were 50 × 150. For PASCAL, the part sizes
were 80× 80 and the root sizes were 114× 314. In Felzen-
szwalb et al. [13] the spatial resolution of the root is lower
than that of the other parts. Similarly, we downsample the
root windows, leading to an effective resolution of 25× 75

1The root detections are not shown in Figure 1 for simplicity.

(a) HP: +ve windows (b) HP: -ve windows

(c) MP: +ve windows (d) MP: -ve windows
Figure 4: Training data with positive (+ve) windows containing a person
(left) and negative (-ve) windows not containing a person (right) shown to
human subjects for learning a spatial model. Windows are cropped from
part visualizations for (top) human detected parts (HP) and (bottom) ma-
chine detected parts (MP) in gray-scale PASCAL images.

for INRIA and 29×80 for PASCAL. For low-resolution part
detection in both INRIA and PASCAL, the resolution of the
parts was reduced to 20 × 20, and the roots were scaled to
24 pixels in the largest dimension. For easy viewing, the
parts and roots were displayed to subjects with the largest
dimension scaled to 80 pixels. The part patches were sam-
pled with 50% overlap between consecutive patches, and
the root windows were sampled at 75% overlap.

4.3. Spatial model (SM)

To study the ability of the human subjects to reason
about spatial relationships, we train the subjects using the
colored part-visualizations, as shown in Figure 4. Sub-
jects are then asked to classify windows using the same
part-visualizations as containing a person or not (see Fig-
ure 1(h)). The set of windows are overlapping and ran-
domly sampled. 10 subjects classified each window. A con-
fidence score was computed as the average number of sub-
jects classifying a window as containing a person. Standard
non-maximal suppression can be performed by a machine
using the confidence scores on all windows in an image. Fi-
nally, a precision-recall curve is computed to quantify the
human subjects’ performance. We note that similar part-
detection visualizations can be created for both human and
machine detected parts as shown in Figure 22. This allows

2To visualize the part detections of Felzenszwalb et al. [13] which con-
tain highly overlapping detections, we perform non-maximal suppression
among the parts. Each part is mapped to a color with intensity corre-
sponding to the estimated likelihood of a person given the part score. Fur-
ther evaluation indicates that our NMS processing of the parts actually
increases the machine AP for INRIA by 0.018 and for PASCAL by 0.045.
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Figure 5: Summary of all experiments performed to test the use of hu-
mans and machines to perform various combinations of the components in
a parts-based person detector.

us to evaluate the human spatial-model on machine or hu-
man detected parts. Inversely, the human detected parts can
be fed into a machine spatial model.

One variation of the above experiments used for further
analysis is to show subjects windows extracted from natural
images instead of part visualizations (Figure 1 (b)). This is
equivalent to using human extracted-features, parts as well
as the human’s spatial-model. We may also restrict the fea-
tures available to the human subjects by pre-processing the
images (Figure 1(d)), while still using human detected parts
and spatial models.

4.4. Context and non-maximal suppression (NMS)

In the human studies on spatial modeling, we asked the
subjects to classify cropped windows extracted from the im-
ages without context. We can study NMS and contextual
reasoning by showing the subjects information over the en-
tire image, and asking them to draw bounding boxes around
detected persons (Figure 1(a,c,g)). By performing this task,
subjects are implicitly performing NMS, and can use con-
textual information if provided. As shown in Figure 1, the
information shown to the subjects is of three types; (a) orig-
inal color images, (c) images after feature extraction, and
(g) part-detections.

5. Results

In this section, we provide the results of numerous ma-
chine and human studies. We analyze the results with re-
spect to the four detector components; feature extraction,
part detection, spatial models and context/NMS. We also
attempt to quantitatively compare the relative performance
gains that may be achieved by improving each component
of the detector. An illustration of the various combinations
of human and machine experiments is shown in Figure 5.
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CH GH NH CL GL NL

Figure 6: Effect of features: Accuracy of human person detector (left),
and human part detector with machine spatial model and NMS (right) in
high (H) and low (L) resolution color (C), grey-scale (G) and normalized-
gradient (N) images.

5.1. Effect of features

We can analyze the effect of feature types using humans
as person and part sliding window classifiers. We compare
results using the original image (Figure 5 (b, c)) with results
using different feature types (Figure 5 (e, f)). The results
are summarized in Figure 6. We see that the loss of color or
resolution does not significantly affect detection accuracies.
Using normalized gradients alone did degrade human per-
formance significantly, especially on the PASCAL dataset.

5.2. Effect of parts

In order to quantify the effect of better part detectors,
we compare the performance of sliding window detectors
on parts detected by humans and machines. We report re-
sults from showing grey scale image patches to the sub-
jects, since the machine models do not use color. Similar
results were found with other features types. There are sev-
eral pairs of results we may consider as shown in Figure 5.
These include using the machine spatial model with NMS
(f, k), the human spatial model and machine NMS (g, h),
and the human spatial model with human NMS (i, j). The
results are shown in Figure 7. The use of human part de-
tections significantly improves the performance of the de-
tectors in most cases. For the challenging PASCAL dataset
the improvement is as high as 0.24 for human detected parts
over machine detected parts.

5.3. Effect of spatial models

We evaluate the effect of spatial models using a series of
human studies on both machine and human detected parts.
As shown in Figure 5, we compare machine to human spa-
tial models using machine detected parts (h, k) and human
detected parts (b, c) and (f, g). The results are shown in
Figure 8. The results indicate that human spatial models do
not significantly or consistently affect the AP scores across
the various scenarios.
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Figure 7: Effect of different part detectors: Accuracy of humans
(HSW) and machines (MSW) spatial models followed by machine NMS,
as well as using humans (HD) for both spatial models and NMS on part-
visualizations. The human-parts are parts detected by subjects on grey-
scale images.
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Figure 8: Effect of spatial models. Accuracy of human and machine
spatial models on human part visualizations (CH, GH, NH, CL, GL, NL)
and machine part visualizations (MP).

5.4. Effect of non-maximal suppression and context

Finally, we study the influence of context and non-
maximal suppression (NMS) on detection performance.
Two sets of experiments from Figure 5 can be compared.
First, we can compare the human subjects as sliding win-
dow classifiers followed by machine NMS (e), to the human
subjects as detectors using the entire image (d). The results
are shown in Figure 9 (left) for grey-scale images. The use
of the subjects’ contextual models and NMS significantly
increases performance by up to 0.15 on the PASCAL dataset
over using the machine NMS.

Second, we can compare results using the part visualiza-
tions with human spatial models and machine NMS (g, h) to
human spatial models and human NMS (i, j). The results are
shown in Figure 9 (right). Since the subjects only have ac-
cess to part detections, they are limited to performing intra-
category contextual reasoning or NMS. As demonstrated in
Parikh et al. [30], the use of inter-category contextual infor-
mation may not be necessary given high resolution appear-
ance information. A similar finding is found by compar-
ing the experiments in Figure 9 that all use high resolution
information. The amount of improvement in the left plot
using all contextual information is similar to the right two
plots that only use intra-category contextual information.

Figure 10 compares the accuracy of human subjects as
person detectors (a, d) to humans as sliding window classi-
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Figure 9: Effect of NMS + Context. Accuracy of human detectors using
(left) high resolution grey-scale images and using (two right plots) human-
part (HP) and machine-part (MP) visualizations.
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Figure 10: Effect of Context. Humans can reliably leverage contextual
information and maintain robust detection accuracy even with impover-
ished appearance information.

fiers followed by machine NMS (b, e) across feature types.
The accuracy of human subjects at classifying image win-
dows in isolation decreases significantly as the appearance
information becomes weak (e.g. normalized gradient low
resolution images). However, their performance at detect-
ing people in entire images remains quite robust. As previ-
ously shown in [30], this signifies the importance of contex-
tual information under impoverished scenarios.

5.5. Summary

We summarize the potential improvements in object de-
tection accuracies based on our human and machine studies.
In Figure 12, we show the average improvement in accura-
cies for part detection, spatial modeling and context/NMS
and their variances. In reference to Figure 5, results are
computed from (f, k), (g, h) and (i, j) for part detections; (b,
c), (f, g) and (h, k) for spatial models; and (g, i) and (h, j) for
context/NMS. We find parts to have the biggest impact, fol-
lowed by non-maximal suppression. Spatial models do not
have significant impact. The people in the PASCAL images
as compared to those in the INRIA dataset demonstrate a
wider variation in poses, and often exhibit challenging sce-
narios such as occlusion and truncation. Thus, we observe
a higher potential for improvement on the PASCAL dataset,
as seen in Figure 12. We note that the estimates of potential
improvements can be viewed as lower-bounds, since our hu-
man studies were performed on Amazon Mechanical Turk
where subjects may be distracted and often provide noisy
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(a) Human detector (b) Human sliding-window (c) Machine spatial model
Figure 11: Example failure cases for scenarios with different amounts of human involvement. Correct detections are shown in white, false positives in
red and false negatives in yellow. (a) Even when subjects are shown the entire image, highly occluded people in bad lighting are missed. (b) When subjects
classify windows in isolation from the rest of the image as containing a person or not, lack of context leads to false positives when the windows locally
appear to have parts of a person. (c) A machine spatial model applied to near-perfect human part-detections fails because of symmetric part detections.
Subjects were asked to classify patches as containing arms, legs, etc. and were not asked to distinguish between left/right arms, legs, etc.
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Figure 12: Summary of our results: The component of a parts-based
person detector that can improve detection performance the most is the
part-detection, followed by the NMS component. Spatial models do not
affect the resultant performance significantly.

(a) Machine part detections (b) Resultant detections

(c) Human part detections (d) Resultant detections

Figure 13: Example detections where human detected parts allow for
successful detection (white), while machine detected parts lead to false
positive (red) and false negative (yellow) detections.

responses. Example failure cases for both human subjects
and machines are shown in Figures 11 and 13.

6. Discussion
Our analysis is restricted to sliding-window parts-based

models. It assumes a pipeline where the parts and spatial
models are considered to be independent. Part models could

be learnt jointly with spatial models as in [1, 13]. Moreover,
the weaker the part models, the bigger role spatial models
could play in the final detection performance. Our analy-
sis does not account for such dependencies among various
components in the pipeline.

In our human studies, subjects were instructed to find
parts with semantic meaning (heads, torso, etc.). Since the
patches were presented in isolation, we do not expect this
semantic knowledge to provide contextual information to
subjects. However, machine object detectors have the free-
dom to model parts without semantic meanings. This flex-
ibility may allow for the use of better parts, but could also
make the underlying learning problem intractable.

The accuracies of human subjects as person detectors on
color and grey-scale images is higher than any experiment
using a combination of machine and human components.
This implies that the pipeline proposed for the machine de-
tector may not be the same as the human subjects’.

In conclusion, we presented numerous studies combin-
ing both machine and human components for detecting peo-
ple. By analyzing their relative performance we can deter-
mine which components could offer the greatest boost in
overall performance if improved. Our results show that part
detection is the weakest link on challenging datasets such as
PASCAL, followed by non-maximal suppression and con-
text. Human spatial models appear to offer negligible per-
formance increase over machine spatial models. Grey-scale
information provided the same level of accuracy as color.
However, accuracies suffered when using only normalized
gradients. Future work involves similar analysis for de-
tecting generic object categories and other object detection
models.
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