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Abstract: Several measurement modalities have been 
developed over the years for various nondestructive testing 
and evaluation (NDT&E) applications, such as ultrasonic, 
magnetic flux leakage, and eddy current testing, all of 
which have been used extensively in pipeline defect identifi-
cation. While it is generally believed that different testing 
modalities provide complementary information, only a sin-
gle testing modality is typically used for a given applica-
tion. This is in part due to lack of effective, computationally 
feasible data fusion algorithms that are applicable to 
NDT&E signals.  Such an algorithm capable of data fusion 
can combine information from two or more different 
sources of data, giving more insight and confidence to the 
data analysis than a decision that would otherwise be based 
on either of the sources alone. Learn++, previously intro-
duced as an incremental learning algorithm, was applied to 
a NDT&E data fusion application.  Specifically, we gener-
ated two ensembles of classifiers, one trained on ultrasonic 
signals, and the other on corresponding magnetic flux leak-
age signals obtained from stainless steal samples that con-
tained five classes of discontinuities: crack, pitting, weld, 
mechanical damage, and no discontinuity. We have ob-
served that the prediction ability of the automated classifi-
cation system, as measured by the accuracy and reliability 
of the classification performance on validation data, was 
significantly improved when the two data sources were 
combined using Learn++.  

Keywords: Data fusion, combining classifiers, ensem-
ble systems, incremental learning, Learn++ 
1 Introduction:  

We have previously introduced Learn++ as an effective 
automated classification algorithm that is capable of learn-
ing incrementally from new data that may later become 
available, after a classification system has already been cre-
ated with the initially available data. The algorithm is based 
on generating an ensemble of classifiers and appropriately 
combining the outputs of these classifiers. We have recently 
discovered that the ensemble of classifiers approach used 
for incremental learning is directly applicable for data fu-
sion applications. This is because data fusion also involves 
learning from additional data, albeit with a different set of 
features. Our approach – which can be considered as a deci-
sion level fusion – is then to employ an ensemble of classi-
fiers strategically generated by using all of the data sources 
available such that the complementary pieces of informa-
tion provided by different datasets are best utilized. The 
classifier outputs predicting a specific defect type are then 
combined through weighted majority voting of the classifier 
outputs, where the weights are determined based on the 

training / previous performance of each classifier. The de-
fect class that receives the highest weighted vote is finally 
selected by the ensemble system.  
1.1 Incremental Learning and Data Fusion  

Classification algorithms usually require availability of 
an adequate and representative set of training data to gener-
ate an appropriate decision boundary and provide a satisfac-
tory generalization performance. This is particularly true if 
an ensemble approach of classification is used and the clas-
sifiers are combined using trainable rules such as weighted 
majority voting, weighted sum rule and weighted product 
rules, as opposed to fixed rules such as the simple sum, 
product and majority voting rules [1]. However, acquisition 
of such data is expensive and time consuming, and conse-
quently it is not uncommon for the entire data to become 
available gradually in small batches over a period of time. 
Furthermore, the datasets acquired in subsequent batches 
may introduce instances of new classes that were not pre-
sent in previous datasets. In such settings, it is necessary for 
an existing classifier to be able to acquire the newly intro-
duced knowledge without forgetting the previously learned 
information. The ability of a classifier to learn in this fash-
ion is usually referred to as incremental learning.  

It is well known that data available from multiple sources 
underlying the same phenomenon may contain complemen-
tary information. For instance, in non-destructive evaluation 
of pipelines, defect information may be obtained from eddy 
current, magnetic flux leakage images, ultrasonic scans, 
thermal imaging, etc. Intuitively, if such information from 
multiple sources can be appropriately combined, the per-
formance of a classification system can be improved. A 
classification system, capable of combining information 
from multiple sources or from multiple feature sets, is said 
to be capable of performing data fusion. Consequently, both 
incremental learning and data fusion involve learning from 
different sets of data. In incremental learning the datasets 
may introduce new classes, whereas in data fusion the data-
sets may contain different features, indicating a conceptual 
similarity between incremental learning and data fusion. 
1.2 Ensemble Approach for Incremental Learning 

A multiple classifier system (MCS) combines an en-
semble of generally weak and/or diverse classifiers. The di-
versity in the classifiers allows different decision bounda-
ries to be generated by using slightly different training pa-
rameters, such as different training datasets. The intuition is 
that each classifier will make a different error, and strategi-
cally combining these classifiers can reduce total error. 
Thus, MCS takes advantage of the so-called instability of 
the weak classifier and in turn generates a strong classifier 
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[2-3]. Ensemble or MCS have attracted a great deal of at-
tention over the last decade due to their reported superiority 
over single classifier systems on a variety of applications 
[3-5]. 

The ensemble approach has also been widely used with 
a variety of algorithms to improve the generalization per-
formance of a classification system. However, using this 
approach to solve the problem of incremental learning has 
been mostly unexplored. In exploration of such an approach 
to the incremental learning problem, we have recently de-
veloped Learn++, and have shown that it is indeed capable 
of incrementally learning [5]. Recognizing the above men-
tioned conceptual similarity between incremental learning 
and data fusion, we now evaluate Learn++ on a real world 
data fusion problem. The approach and our preliminary re-
sults are presented in this paper. 
1.3 Ensemble Approaches for Data Fusion 

Several approaches have been developed for data fusion, 
for which ensemble approaches constitute a relatively new 
breed of algorithms. Traditional methods are generally 
based on probability theory, such as the Dempster-Schafer 
(DS) theory and its many variations. However, DS based 
algorithms require specific knowledge of the underlying 
probability distribution, which may not be readily available. 

The majority of these algorithms have been developed in 
response to the needs of military applications, most notably 
target detection and tracking [6-8]. Ensemble approaches 
seek to provide a fresh and a more general solution for a 
broader spectrum of applications. Such approaches include 
simpler combination schemes such as majority vote, thresh-
old voting, averaged Bayes classifier, maximum/minimum 
rules, and linear combinations of posterior probabilities 
[9,10]. More complex data fusion schemes are also widely 
used, including ensemble based variations of DS, neural 
and fuzzy systems, and stacked generalization [11 - 16]. 
2   Learn++ 

The novelty of Learn++ is its incremental learning capa-
bility. It can learn new information as and when new data 
become available, without forgetting the previously ac-
quired knowledge and without requiring access to the pre-
vious data, hence without suffering from catastrophic for-
getting [17]. Specifically, Learn++ generates an ensemble 
of relatively weak classifiers for each new database that be-
comes available, where the outputs of each individual clas-
sifier of the ensemble are combined through weighted ma-
jority voting to obtain the final classification.  

Weak / diverse classifiers are trained on a subset of the 
training data, randomly selected from a dynamically up-
dated distribution over the training data instances. This dis-
tribution is biased towards those instances that have not 
been properly learned or seen by the previous ensemble(s).  

For each database, FSk, k=1,…,K, comprised of a differ-
ent Feature Set (obtained from the same particular applica-
tion) that is submitted to Learn++, the inputs to the algo-
rithm are  (i) a sequence Sk of mk training data instances xi 
along with their correct labels yi ; (ii) a supervised classifi-
cation algorithm BaseClassifier, generating individual clas-

sifiers (henceforth, hypotheses); and (iii) an integer Tk, the 
number of classifiers to be generated for the kth database. 

The only requirement on the BaseClassifier algorithm is 
that it can obtain at least 50% correct classification per-
formance on its own training dataset, so that a minimum 
reasonable performance can be expected from each classi-
fier. Note that for a two-class problem, 50% performance is 
equivalent to random guessing. BaseClassifier can be any 
supervised classifier such as a multilayer perceptron, radial 
basis function, or a support vector machine. Their weakness 
can be controlled by adjusting their size and error goal with 
respect to the complexity of the problem. Sufficiently dif-
ferent decision boundaries can then be generated by these 
weak classifiers by training them with slightly different 
training datasets. It should be noted that most of the re-
sources in generating a strong classifier are typically spent 
in fine-tuning the decision boundary. Since Learn++ re-
quires only a rough estimate of the decision boundary from 
its weak classifiers, the expensive step of fine-tuning is 
avoided. This saves on computational time during training, 
and also helps prevent overfitting of the training data.  

Each hypothesis ht is trained on a different subset of the 
training data. This is achieved by initializing a set of 
weights for the training data, wt, and a distribution Dt ob-
tained from wt. According to this distribution a training 
subset TRt is drawn from the training data at the tth iteration 
of the algorithm. The distribution Dt determines which in-
stances of the training data are more likely to be selected 
into the training subset TRt. Unless a priori information in-
dicates otherwise, this distribution is initially set to be uni-
form, giving equal probability to each instance to be se-
lected into the first training subset. At each subsequent it-
eration t, the weights previously adjusted at iteration t-1 are 
normalized to ensure a legitimate distribution Dt (step 1). 

Training subset TRt is drawn according to Dt (step 2), and 
the weak classifier is trained on TRt in step 3. A hypothesis 
ht is generated by the tth classifier, whose error εt, is com-
puted on the entire (current) database Sk as the sum of the 
distribution weights of the misclassified instances (step 4) 
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As mentioned above, the error, as defined in Equation 
(1), is required to be no greater than 0.5 to ensure that a 
minimum reasonable performance can be expected from ht. 
If this is the case, the hypothesis ht is accepted and the error 
is normalized to obtain the normalized error. 
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If εt ≥ 0.5 then the current hypothesis is discarded, and a 
new training subset is selected by returning to step 2. All t 
hypotheses generated thus far are then combined using a 
voting scheme to obtain a composite hypothesis Ht (step 5).  
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The voting scheme used by Learn++ is not quite democ-
ratic. Each hypothesis is assigned a weight as the logarithm 
of the reciprocal of its normalized error. Therefore, those 
hypotheses with smaller training error, indicating better per-
formances, are awarded with a higher voting weight and 
thus have more say in the final classification decision. The 
error of the composite hypothesis Ht is then computed in a 
similar fashion as the sum of the distribution weights of the 
instances that are misclassified by Ht (step 6)  
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where, | · | evaluates to 1, if the predicate holds true and 0 
otherwise. The normalized composite error Bt is obtained as   
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which is then used for updating the distribution weights as-
signed to individual instances  
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Equation (6) indicates that the distribution weights of the 
instances correctly classified by the composite hypothesis 
Ht are reduced by a factor of Bt (0<Bt<1). Effectively, this 
increases the weights of the misclassified instances making 
them more likely to be selected to the training subset of the 
next iteration. We note that this weight update rule, based 
on the performance of the current ensemble, facilitates in-
cremental learning. This is because, when a new dataset is 
introduced (particularly with new classes), the existing en-
semble (Ht) is bound to misclassify the instances that have 
not yet been properly learned, and hence the weights of 
these instances are increased, forcing the algorithm to focus 
on learning novel information introduced by the new data.  

At any point, a final hypothesis Hfinal can be obtained by 
combining all hypotheses that have been generated thus far.  
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Figure 1 illustrates using Learn++ is a data fusion setting. 
3   Results 

While Learn++ was originally developed as an incre-
mental learning algorithm, its ensemble structure allows it 
to be used in data fusion applications as well. This is be-
cause the algorithm can accept a new dataset even if it con-
tains completely different features as compared to the data 
the algorithm has previously seen. When used in data fusion 
mode, Learn++ seeks to incrementally learn novel informa-
tion content from databases that come from the same appli-
cation but are composed of different features. 

Implementing data fusion using Learn++ with the ensem-
ble approach was tested on a real world application – identi-
fying defects in pipelines using non-destructive techniques. 
Two datasets of different features were fused. The first was 
a set of Magnetic Flux Leakage (MFL) images, and the 
second was a set of Ultrasonic Testing (UT) images. 

 
Figure 1. Block diagram of the ensemble based  

data fusion algorithm 

Both modalities can be used to detect and identify defects 
in pipes. Illustrations of these images along with the type of 
defect they represent are shown in Figure 3. 

 
Figure 2. Sample MFL and UT images of defect types 

The database consisted of 21 images from to a total of 5 
classes: (i) No defect: 4 images; (ii) Pitting:  9 images; (iii) 
Crack:  4 images; (iv) Mechanical Damage: 4 images; (v) 
Weld: 4 images.  Ten images (2 from each class) were used 
as the training data and the remaining 11 as the testing data. 
This distribution was kept constant for all dataset shuffles 
for different runs and to perform cross validation. 

The Learn++ algorithm was run several times in data fu-
sion mode with different combinations of the parameters 
such as the error goal and number of hidden layer nodes in 
the MLP networks. Classifiers were added to the ensemble 
until classification performance leveled off beyond a certain 
number of classifiers. The algorithm was run using a single 
hidden layer MLP as the base classifier with the following 
parameters (observed to be the optimum range based on 
prior experience): error goal: 0.05 ~ 0.08 in steps of 0.01, 
and number of hidden layer nodes: 5 ~ 45 in steps of 5. 
Every possible combination of the above parameters was 
used. Also, the experiment was duplicated using a different 
partition of the data (a different selection of the instances 

MFL UT Type of Defect

No Defect 

Pitting 

Crack

Mechanical Damage 

Weld 
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used for training and testing). Therefore, there were 36 gen-
eralization performance values for each partition of data, 
yielding a total of 72 generalization performances. The 
number of classifiers in an ensemble trained on each of the 
two feature sets could vary from 1 to 50 classifiers. The re-
sults obtained are summarized in Table 1.  

Table 1: Comparing the data fusion performance to the  
individual performance of MFL (MFLp) and UT (UTp) 

 
The second column of Table 1 indicates the percentages 

of different comparisons between the data fusion perform-
ance and the individual MFL and UT performances, out of 
the 72 experiments. For example, in 31.94% (23 out of the 
72) of the simulations, the data fusion performance was bet-
ter than either of the individual MFL or UT performance. 
Adding the numbers in rows 5 and 6, it can be seen that the 
proportions of undesirable cases (when the data fusion per-
formance is the lower of MFL and UT or worse than both) 
is about 11.11% of the times data fusion was performed (8 
out of 72). The most desirable cases (when the data fusion 
performance is the higher of MFL and UT or better than 
both) are about 72.22% of the times (52 out of 72) data fu-
sion was performed.  

The above results are promising, but not optimum. The 
results were analyzed further and a few drawbacks in the 
algorithm were identified, such as the discrepancies be-
tween the number of classifiers from each feature set, as 
well as β assuming a zero value, and fixed. As a result of 
these modifications, the undesirable instances were elimi-
nated and the desirable instances were observed about 
97.2% of the times data fusion was performed. 
4   Conclusions 

Recognizing the conceptual similarities between incre-
mental learning and data fusion, the Learn++ algorithm – 
originally developed for incremental learning – has been 
evaluated in a data fusion setting. The algorithm incremen-
tally and sequentially learns data comprised of different sets 
of features by generating an ensemble of classifiers for each 
dataset, and then combining them through a weighted ma-
jority voting scheme. We have evaluated the algorithm on a 
real world data fusion application for pipeline defect identi-
fication, where the two different datasets consisted of UT 
and MFL signals of the same pipeline specimens. The re-
sults indicate that the Learn++ algorithm, when used to 
combine information contained in two datasets, performed 
significantly better then each of the testing modalities indi-

vidually. Various statistical tests have been performed to 
establish this fact (not included here for space considera-
tions). The ability of the algorithm to learn incrementally as 
well as to fuse different datasets to extract additional infor-
mation not available in either dataset makes Learn++ a ver-
satile algorithm. Further testing of the algorithm on addi-
tional real world and benchmark data is currently under-
way.  
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Data fusion performance combining  
two feature sets is 

Propor-
tions % 

Greater than max (MFLP, UTP) 31.94 
Equal to max (MFLP, UTP) 40.28 
Equal to both MFLP and UTP 9.72 
Between min (MFLP,UTP)  max (MFLP,UTP) 6.94 
Equal to min (MFLP, UTP) 8.33 
Less than min (MFLP, UTP) 2.78 
Total 100 
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