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fiers post-training. For three attributes like white and furry
and dog1, a combination can include multiple components
like white and furry-dog. We argue that geometric reason-
ing in terms of the tightness and margin of each component
in a combination is a reasonable proxy for what would have
happened if we would have trained a classifier for each com-
ponent in the combination. Geometrically speaking, a good
combination should have components that occupy tight re-
gions of the feature space and have large margins. Figure 2
shows an illustration where purple instances are the ones
that have both blue and red attributes. What justifies learn-
ing a red-blue classifier instead of red and blue classifiers
independently is that purple instances occupy a tight area in
the feature space with big margins from other blue and red
instances. If it was not the case, then we could have learned
separate red and blue classifiers; they are more widely ap-
plicable and would not sacrifice training data. To efficiently
compute these geometric measurements we propose to map
the images from the original feature space into a binary
space where discriminative properties are preserved. In this
section we assume that such a mapping exists. Later in the
experiments we show that our formulation is not very sen-
sitive to the choice of the mapping as long as discriminative
properties are preserved/enhanced in the binary space. This
is not a restrictive condition as most existing binary map-
ping approaches in literature meet this criteria.

We estimate the learnability of a combination based on
the diameter of the components in the combination and
the margin within and across components. To setup no-
tations, let’s assume there are n attributes involved in a
given multi-attribute query, A = {a1, ..., an}. For ex-
ample, {white,furry,dog}. There are 2

n different ways
to form components. For instance, {white}, {furry,dog},
{white,dog}, {furry}, etc. The set of all possible com-
ponents is the powerset of A, which we call S =

{S1, S2, ·, Sm},m = 2

n. A combination is a subset of S
that covers A e.g. {{white,furry}, {dog}}, which we write
as {white-furry,dog} in shorthand. We define the learnabil-
ity of a combination C as

L(C) =
X

c⇤C
[

X

c0⇤C,c0 ⌅=c

K(c, c⇥) +
X

a⇤c

K(c, c \ a)�D(c)]

where c indexes components in the combination C, a in-
dexes attributes in each component, D(c) is the diameter of
each component defined as maxx,y⇤c d(x, y) where x and y
are images that belong to a component and d is the distance
between them. The diameter captures the range of visual
appearances of images within a component. The higher the
variety of appearances, the less learnable the corresponding
component. K(c, c⇥) is the margin between two components
c and c⇥ defined as minx⇤c,y⇤c0 d(x, y). This captures how
distant the images belonging a component are from images

1For generality of discussion, we treat all words involved in a query as
“attributes”
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Figure 2. What makes merging two attributes desirable? When
instances that satisfy both attributes occupy a tight region in the
feature space and have enough margin to the instances that have
one of the attributes. This figure depicts a case where training a
merged red-blue classifier is beneficial. Because purple dots (in-
stances that have both red and blue attributes) have small diameter
(D) and enough margins (K) with the rest of blue and red dots.

of other components. The more distant they are, the easier it
is to learn a classifier for the component. Finally, K(c, c\a)
is the margin between images that satisfy all attributes of a
component, and those that satisfy all but one attribute. For
example the margin between purple and red in Figure 2. For
components that consist of only one attributes the within
component margins are zero.

We are interested in finding the optimal combination C�

that obtains best learnability score and covers all members
of A without being inefficiently redundant . We can formu-
late this problem as the following integer program:

max

x
L(S ⇤ x)� �|x|

ZTx ⌅ 1

x ⇧ {0, 1}m

(1)

where ⇤ is the set selection operator, Z is an m ⇥ n bi-
nary set system matrix indicating which attributes appear
in which component, � is the trade off factor between the
number of components in a combination (efficiency) and the
learnability score, and x is the indicator vector that identi-
fies which components will make it to the final combination.

Set covering problem can be reduced to our problem.
The optimization 1 is harder than standard weighted set cov-
ering problem because our learnability function L defines
over all component in a combination. The corresponding
weighted set cover formulation requires the weighting func-
tion to be defined over each component independently. The
interdependencies between components in our learnability
function make this optimization NP-hard. However, our
learnability function doesn’t face an interdependency issue
in case of two attributes. This suggests defining a gain func-
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nary set system matrix indicating which attributes appear
in which component, � is the trade off factor between the
number of components in a combination (efficiency) and the
learnability score, and x is the indicator vector that identi-
fies which components will make it to the final combination.

Set covering problem can be reduced to our problem.
The optimization 1 is harder than standard weighted set cov-
ering problem because our learnability function L defines
over all component in a combination. The corresponding
weighted set cover formulation requires the weighting func-
tion to be defined over each component independently. The
interdependencies between components in our learnability
function make this optimization NP-hard. However, our
learnability function doesn’t face an interdependency issue
in case of two attributes. This suggests defining a gain func-

tion for pairs of attributes that takes into account the same
measurements (diameter and margins) as in our learnability
function:

G(ai, aj) = K(aiaj , ai) +K(aiaj , aj)�D(aiaj)

Given two attributes, positive values for the gain function
recommend merging the two attributes and negative values
encourage training separate classifiers for each attribute and
then merging their scores. The higher the gain function the
higher is the reward for merging two attributes. Our gain
function exposes an interesting property that helps prune
the search space drastically.

Lemma 1. If attributes ai and aj are merged because
G(ai, aj) ⇤ 0 then for any other attribute ak, G(aiaj , ak) ⇤
G(ai, ak) or G(aj , ak)
Proof. It’s simple to show that if A ⌅ B then D(A) ⇥
D(B), and if C ⌅ D then K(A,C) ⇤ K(B,D).
We can show that G(aiaj , ak) = K(aiajak, aiaj) +
K(aiajak, ak) � D(aiajak)+ > K(aiajak, aiaj) +
K(aiajak, ak)�D(aiak)+ > K(aiak, ai)+K(aiak, ak)�
D(aiak)+ = G(ai, ak). The same holds for G(ai, aj).

What this lemma implies is that once two attributes are
merged, we need not consider merging any other attribute
with either of these attributes individually. This suggests
the following recursive greedy solution to find the highest
scoring and covering combination.

Our greedy solution starts with computing the gain for
all pairs of attributes. It picks the pair with the highest gain.
If the highest gain is positive, then we merge those attributes
and add a new merged-attribute to our set of attributes and
remove the two independent ones. Meaning that if ai and aj
provide the biggest positive gain we add aiaj as a new at-
tribute to A and remove ai and aj from the set. The Lemma
above shows that it is safe to remove the independent at-
tribute from the set as no other attribute can join either of ai
or aj independently and result in higher scoring combina-
tion. The new A now has n�1 elements. We can recursively
repeat this procedure till we cover all attributes. If there is
no pair with positive gain, we move to triplets. This never
happened in our experiments.

Efficient Computation of Geometric Measurements:
Margins and diameters can be computed efficiently in a bi-
nary feature space; O(NK) where N is the number of im-
ages and k is the dimensionality of bit vectors. The core part
for computing both margin and diameter is to compute the
average of all pairwise distances. A naive algorithm would
be to go over all pairs and compute their distances and get
mean of them. But since we are using binary codes for each
dimension of the binary codes we can compute number of
zero bits and number of one bits. Then the sum of the dis-
tance of any given bit to all other bits can be computed in
O(constant). Algorithm 1 explains this algorithm more
formally.

Algorithm 1 Efficient Sum of Pairwise Hamming Distances
Input: B1 , B2 are a binary matrix of size N �K.
Output: S: sum of hamming distances between all pairs of rows in B1

and B2.
1: for k = 1 ⇤ K do
2: Z(k) ⇥

P
k B2(:, k) Comment: Counting Number of zeros in

kth dimension of B2
3: O(k) ⇥

P
k ¬B2(:, k) Comment: Counting Number of ones in

kth dimension of B2
4: end for
5: for i = 1 ⇤ N do
6: for k = 1 ⇤ K do
7: if B1(i, j) = 0 then
8: P (i, j) ⇥ O(k)
9: else

10: P (i, j) ⇥ Z(k)
11: end if
12: end for
13: end for
14: S ⇥

P
P Comment: Sum of all elements in P

4. Experimental Results
We evaluate our method in several different settings. We

conduct experiments on two challenging datasets: the aPas-
clal [3] and the Caltech Bird200 dataset [18]. We compare
our method with four different baselines described later. We
also test our method with different binary code mapping
methods and show that our method is robust to the choice
of binary mapping. We also evaluate the impact of different
binary code sizes on the performance of our approach. In
addition to accuracy, we also compare the running time of
our method to that of baselines. We find that our low com-
plexity O(NK) gives us one order of magnitude speed up.
We also present qualitative results and analysis that reveal
the tendencies of different attributes to merge with other at-
tributes.

4.1. Datasets
aPASCAL [3]: This dataset contains the 20 PASCAL

object categories. On average each category has 317 im-
ages. Each image is labeled by 64 attributes that describe
different object properties such having a particular body
part, types of materials, etc. We experiment with the low-
level features provided by the author of [3] on the data set
website and also train/test splits provided with the dataset.
The features and attribute annotations are not labeled for
entire image. They are computed only for bounding box of
the objects.

Caltech-UCSD Bird200 [21] This data set is a challeng-
ing subordinate recognition dataset. It includes 200 differ-
ent species of North American birds with on average 300
images per category. Each image is annotated with 312 bird
attributes such as color and shapes of wings, beaks, etc. We
used the low-level features provided by [2] describing color,
shape and contours. Similar to aPascal, here, we don’t use
entire image, we ony use the area that the bounding box of
the image specifies for a bird in that image. We devide each
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tion for pairs of attributes that takes into account the same
measurements (diameter and margins) as in our learnability
function:

G(ai, aj) = K(aiaj , ai) +K(aiaj , aj)�D(aiaj)

Given two attributes, positive values for the gain function
recommend merging the two attributes and negative values
encourage training separate classifiers for each attribute and
then merging their scores. The higher the gain function the
higher is the reward for merging two attributes. Our gain
function exposes an interesting property that helps prune
the search space drastically.

Lemma 1. If attributes ai and aj are merged because
G(ai, aj) ⇤ 0 then for any other attribute ak, G(aiaj , ak) ⇤
G(ai, ak) or G(aj , ak)
Proof. It’s simple to show that if A ⌅ B then D(A) ⇥
D(B), and if C ⌅ D then K(A,C) ⇤ K(B,D).
We can show that G(aiaj , ak) = K(aiajak, aiaj) +
K(aiajak, ak) � D(aiajak)+ > K(aiajak, aiaj) +
K(aiajak, ak)�D(aiak)+ > K(aiak, ai)+K(aiak, ak)�
D(aiak)+ = G(ai, ak). The same holds for G(ai, aj).

What this lemma implies is that once two attributes are
merged, we need not consider merging any other attribute
with either of these attributes individually. This suggests
the following recursive greedy solution to find the highest
scoring and covering combination.

Our greedy solution starts with computing the gain for
all pairs of attributes. It picks the pair with the highest gain.
If the highest gain is positive, then we merge those attributes
and add a new merged-attribute to our set of attributes and
remove the two independent ones. Meaning that if ai and aj
provide the biggest positive gain we add aiaj as a new at-
tribute to A and remove ai and aj from the set. The Lemma
above shows that it is safe to remove the independent at-
tribute from the set as no other attribute can join either of ai
or aj independently and result in higher scoring combina-
tion. The new A now has n�1 elements. We can recursively
repeat this procedure till we cover all attributes. If there is
no pair with positive gain, we move to triplets. This never
happened in our experiments.

Efficient Computation of Geometric Measurements:
Margins and diameters can be computed efficiently in a bi-
nary feature space; O(NK) where N is the number of im-
ages and k is the dimensionality of bit vectors. The core part
for computing both margin and diameter is to compute the
average of all pairwise distances. A naive algorithm would
be to go over all pairs and compute their distances and get
mean of them. But since we are using binary codes for each
dimension of the binary codes we can compute number of
zero bits and number of one bits. Then the sum of the dis-
tance of any given bit to all other bits can be computed in
O(constant). Algorithm 1 explains this algorithm more
formally.

Algorithm 1 Efficient Sum of Pairwise Hamming Distances
Input: B1 , B2 are a binary matrix of size N �K.
Output: S: sum of hamming distances between all pairs of rows in B1

and B2.
1: for k = 1 ⇤ K do
2: Z(k) ⇥

P
k B2(:, k) Comment: Counting Number of zeros in

kth dimension of B2
3: O(k) ⇥

P
k ¬B2(:, k) Comment: Counting Number of ones in

kth dimension of B2
4: end for
5: for i = 1 ⇤ N do
6: for k = 1 ⇤ K do
7: if B1(i, j) = 0 then
8: P (i, j) ⇥ O(k)
9: else

10: P (i, j) ⇥ Z(k)
11: end if
12: end for
13: end for
14: S ⇥

P
P Comment: Sum of all elements in P

4. Experimental Results
We evaluate our method in several different settings. We

conduct experiments on two challenging datasets: the aPas-
clal [3] and the Caltech Bird200 dataset [18]. We compare
our method with four different baselines described later. We
also test our method with different binary code mapping
methods and show that our method is robust to the choice
of binary mapping. We also evaluate the impact of different
binary code sizes on the performance of our approach. In
addition to accuracy, we also compare the running time of
our method to that of baselines. We find that our low com-
plexity O(NK) gives us one order of magnitude speed up.
We also present qualitative results and analysis that reveal
the tendencies of different attributes to merge with other at-
tributes.

4.1. Datasets
aPASCAL [3]: This dataset contains the 20 PASCAL

object categories. On average each category has 317 im-
ages. Each image is labeled by 64 attributes that describe
different object properties such having a particular body
part, types of materials, etc. We experiment with the low-
level features provided by the author of [3] on the data set
website and also train/test splits provided with the dataset.
The features and attribute annotations are not labeled for
entire image. They are computed only for bounding box of
the objects.

Caltech-UCSD Bird200 [21] This data set is a challeng-
ing subordinate recognition dataset. It includes 200 differ-
ent species of North American birds with on average 300
images per category. Each image is annotated with 312 bird
attributes such as color and shapes of wings, beaks, etc. We
used the low-level features provided by [2] describing color,
shape and contours. Similar to aPascal, here, we don’t use
entire image, we ony use the area that the bounding box of
the image specifies for a bird in that image. We devide each
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recommend merging the two attributes and negative values
encourage training separate classifiers for each attribute and
then merging their scores. The higher the gain function the
higher is the reward for merging two attributes. Our gain
function exposes an interesting property that helps prune
the search space drastically.

Lemma 1. If attributes ai and aj are merged because
G(ai, aj) ⇤ 0 then for any other attribute ak, G(aiaj , ak) ⇤
G(ai, ak) or G(aj , ak)
Proof. It’s simple to show that if A ⌅ B then D(A) ⇥
D(B), and if C ⌅ D then K(A,C) ⇤ K(B,D).
We can show that G(aiaj , ak) = K(aiajak, aiaj) +
K(aiajak, ak) � D(aiajak)+ > K(aiajak, aiaj) +
K(aiajak, ak)�D(aiak)+ > K(aiak, ai)+K(aiak, ak)�
D(aiak)+ = G(ai, ak). The same holds for G(ai, aj).

What this lemma implies is that once two attributes are
merged, we need not consider merging any other attribute
with either of these attributes individually. This suggests
the following recursive greedy solution to find the highest
scoring and covering combination.

Our greedy solution starts with computing the gain for
all pairs of attributes. It picks the pair with the highest gain.
If the highest gain is positive, then we merge those attributes
and add a new merged-attribute to our set of attributes and
remove the two independent ones. Meaning that if ai and aj
provide the biggest positive gain we add aiaj as a new at-
tribute to A and remove ai and aj from the set. The Lemma
above shows that it is safe to remove the independent at-
tribute from the set as no other attribute can join either of ai
or aj independently and result in higher scoring combina-
tion. The new A now has n�1 elements. We can recursively
repeat this procedure till we cover all attributes. If there is
no pair with positive gain, we move to triplets. This never
happened in our experiments.

Efficient Computation of Geometric Measurements:
Margins and diameters can be computed efficiently in a bi-
nary feature space; O(NK) where N is the number of im-
ages and k is the dimensionality of bit vectors. The core part
for computing both margin and diameter is to compute the
average of all pairwise distances. A naive algorithm would
be to go over all pairs and compute their distances and get
mean of them. But since we are using binary codes for each
dimension of the binary codes we can compute number of
zero bits and number of one bits. Then the sum of the dis-
tance of any given bit to all other bits can be computed in
O(constant). Algorithm 1 explains this algorithm more
formally.

Algorithm 1 Efficient Sum of Pairwise Hamming Distances
Input: B1 , B2 are a binary matrix of size N �K.
Output: S: sum of hamming distances between all pairs of rows in B1

and B2.
1: for k = 1 ⇤ K do
2: Z(k) ⇥

P
k B2(:, k) Comment: Counting Number of zeros in

kth dimension of B2
3: O(k) ⇥

P
k ¬B2(:, k) Comment: Counting Number of ones in

kth dimension of B2
4: end for
5: for i = 1 ⇤ N do
6: for k = 1 ⇤ K do
7: if B1(i, j) = 0 then
8: P (i, j) ⇥ O(k)
9: else

10: P (i, j) ⇥ Z(k)
11: end if
12: end for
13: end for
14: S ⇥

P
P Comment: Sum of all elements in P

4. Experimental Results
We evaluate our method in several different settings. We

conduct experiments on two challenging datasets: the aPas-
clal [3] and the Caltech Bird200 dataset [18]. We compare
our method with four different baselines described later. We
also test our method with different binary code mapping
methods and show that our method is robust to the choice
of binary mapping. We also evaluate the impact of different
binary code sizes on the performance of our approach. In
addition to accuracy, we also compare the running time of
our method to that of baselines. We find that our low com-
plexity O(NK) gives us one order of magnitude speed up.
We also present qualitative results and analysis that reveal
the tendencies of different attributes to merge with other at-
tributes.

4.1. Datasets
aPASCAL [3]: This dataset contains the 20 PASCAL

object categories. On average each category has 317 im-
ages. Each image is labeled by 64 attributes that describe
different object properties such having a particular body
part, types of materials, etc. We experiment with the low-
level features provided by the author of [3] on the data set
website and also train/test splits provided with the dataset.
The features and attribute annotations are not labeled for
entire image. They are computed only for bounding box of
the objects.

Caltech-UCSD Bird200 [21] This data set is a challeng-
ing subordinate recognition dataset. It includes 200 differ-
ent species of North American birds with on average 300
images per category. Each image is annotated with 312 bird
attributes such as color and shapes of wings, beaks, etc. We
used the low-level features provided by [2] describing color,
shape and contours. Similar to aPascal, here, we don’t use
entire image, we ony use the area that the bounding box of
the image specifies for a bird in that image. We devide each
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