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Abstract—Relating visual information to its linguistic semantic meaning remains an open and challenging area of research. The
semantic meaning of images depends on the presence of objects, their attributes and their relations to other objects. But precisely
characterizing this dependence requires extracting complex visual information from an image, which is in general a difficult and
yet unsolved problem. In this paper, we propose studying semantic information in abstract images created from collections of clip
art. Abstract images provide several advantages. They allow for the direct study of how to infer high-level semantic information,
since they remove the reliance on noisy low-level object, attribute and relation detectors, or the tedious hand-labeling of images.
Importantly, abstract images also allow the ability to generate sets of semantically similar scenes. Finding analogous sets of
semantically similar real images would be nearly impossible. We create 1,002 sets of 10 semantically similar abstract images
with corresponding written descriptions. We thoroughly analyze this dataset to discover semantically important features, the
relations of words to visual features and methods for measuring semantic similarity. Finally, we study the relation between the
saliency and memorability of objects and their semantic importance.

Index Terms—Semantic Scene Understanding, Linguistic Meaning, Saliency, Memorability, Abstract Images
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1 INTRODUCTION

A fundamental goal of computer vision is to discover
the semantically meaningful information contained within
an image. Images contain a vast amount of knowledge
including the presence of various objects, their properties,
and their relations to other objects. Even though “an image
is worth a thousand words” humans still possess the ability
to detect salient content and summarize an image using only
one or two sentences. Similarly humans may deem two
images as semantically similar, even though the arrange-
ment or even the presence of objects may vary dramatically.
Discovering the subset of image specific information that is
salient and semantically meaningful remains a challenging
area of research.

Numerous works have explored related areas, including
predicting the salient locations in an image [1], [2], ranking
the relative importance of visible objects [3], [4], [5], [6]
and semantically interpreting images [7], [8], [9], [10].
Semantic meaning also relies on the understanding of
the attributes of the visible objects [11], [12] and their
relations [13], [7]. In common to these works is the desire
to understand which visual features and to what degree
they are required for semantic understanding. Unfortunately
progress in this direction is restricted by our limited ability
to automatically extract a diverse and accurate set of visual
features from real images.

In this paper we pose the question: “Is photorealism
necessary for the study of semantic understanding?” In their
seminal work, Heider and Simmel [14] demonstrated the
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Fig. 1. An example set of semantically similar scenes
created by human subjects for the same given sen-
tence.

ability of humans to endow even simple objects such as tri-
angles and circles with the emotional traits of humans[15].
Similarly, cartoons or comics are highly effective at convey-
ing semantic information without portraying a photorealis-
tic scene. Inspired by these observations we propose a novel
methodology for studying semantic understanding. Unlike
traditional approaches that use real images, we hypothesize
that the same information can be learned from abstract
images rendered from a collection of clip art, as shown in
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Fig. 2. An illustration of the clip art used to create the children (left) and the other available objects (right.)

Figure 1. Even with a limited set of clip art, the variety and
complexity of semantic information that can be conveyed
with their combination is impressive. For instance, clip art
can correspond to different attributes of an object, such
as a person’s pose, facial expression or clothing. Their
combination enables an exponential number of potential
appearances, Figure 2.

Related to semantic scene understanding is visual
salience and memorability. When describing a scene, many
objects, attributes and relations are left unmentioned, while
others are so surprising that they are invariably described.
Among other factors, saliency and memorability play an
active role in whether particular image details are worth
mentioning. Previously, many papers have explored low-
level cues for finding salient [1], [3], [16] and memo-
rable [17] regions in an image. However, saliency and
memorability are also dependent on high-level cues [18],
such as the presence and relation of objects, and scene cat-
egories. Using abstract images, these high-level cues may
be directly studied to gain insights into their contribution to
saliency and memorability and how they relate to semantic
importance.

The use of synthetic images provides two main advan-
tages over real images. First, the difficulties in automati-
cally detecting or hand-labeling relevant information in real
images can be avoided. Labeling the potentially huge set of
objects, their properties and relations in an image is beyond
the capabilities of state-of-the-art automatic approaches,
and makes hand labeling expensive and tedious. Hand-
labeling in many instances is also often ambiguous. Using
abstract images, even complex relation information can be
easily computed given the relative placement of the clip
art, such as “Is the person holding an object?” or “Is
the person’s or animal’s gaze directed towards a specific
object?”

Second, it is possible to easily generate related but novel
abstract images. One scenario explored in this paper is the
generation of semantically similar scenes. We accomplish
this by first asking human subjects to generate novel scenes
and corresponding written descriptions. Next, multiple hu-
man subjects are asked to generate scenes depicting the
same written description without any knowledge of the
original scene’s appearance. The result is a set of different
scenes with similar semantic meaning, as shown in Figure
1. Collecting analogous sets of semantically similar real

images would be prohibitively difficult. Another scenario
for using sets of related abstract images is studying object
saliency. By analyzing whether human subjects notice the
addition or removal of an object from an image we may
determine an object’s saliency. Numerous other scenarios
also exist including object importance, saliency of object
relations and scene memorability.

Contributions:
• Our main contribution is a new methodology for study-
ing semantic information and visual salience using ab-
stract images. We envision this to be useful for studying
a wide variety of tasks, such as generating semantic
descriptions of images, text-based image search, or de-
tecting salient objects. The dataset and code are publicly
available on the first author’s webpage.
• We measure the mutual information between visual
features and the semantic classes to discover which visual
features are most semantically meaningful. Our semantic
classes are defined using sets of semantically similar
scenes depicting the same written description. We show
the relative importance of various features, such as the
high importance of a person’s facial expression or the
occurrence of a dog, and the relatively low importance
of some spatial relations.
• We compute the relationship between words and visual
features. Interestingly, we find the part of speech for a
word is related to the type of visual features with which
it shares mutual information (e.g. prepositions are related
to relative position features).
• We analyze the information provided by various types
of visual features in predicting semantic similarity. We
compute semantically similar nearest neighbors using a
metric learning approach [19].
• We study the relation between semantic importance,
saliency and memorability of objects. While these con-
cepts are related, they still provide complementary in-
formation. Objects of high semantic importance are not
always salient or memorable.

Through our various experiments, we study what aspects
of the scenes are visually salient and semantically impor-
tant. We hypothesize that by analyzing semantic importance
and high-level visual salience in abstract images, we may
better understand what information needs to be gathered for
semantic understanding in all types of visual data, including
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real images.

2 RELATED WORK

Semantic scene understanding: Numerous papers have
explored the semantic understanding of images. Most rel-
evant are those that try to predict a written description
of a scene from image features [7], [8], [9], [10]. These
methods use a variety of approaches. For instance, methods
generating novel sentences rely on the automatic detection
of objects [20] and attributes [11], [12], [21], and use
language statistics [9] or spatial relationships [10] for verb
prediction. Sentences have also been assigned to images
by selecting a complete written description from a large
set [7], [8]. Works in learning semantic attributes [11],
[12], [21] are becoming popular for enabling humans and
machines to communicate using natural language. The use
of semantic concepts such as scenes and objects has also
been shown to be effective for video retrieval [22] and
grounded natural language generation from video [23],
[24], [25], [26]. Several datasets of images with multiple
sentence descriptions per image exist [27], [28], [29].
However, our dataset has the unique property of having
sets of semantically similar images, i.e., having multiple
images per sentence description. Our scenes are (trivially)
fully annotated, unlike previous datasets that have limited
visual annotation [27], [28], [30].

Linking visual features to different parts of speech:
Several works have explored visual recognition of different
parts of speech. Nouns are the most commonly collected
[31], [5] and studied part of speech. Many methods use
tagged objects in images to predict important objects di-
rectly from visual features [3], [4], [5], [6], and to study the
properties of popular tags [5], [6]. The works on attributes
described above includes the use of adjectives as well as
nouns relating to parts of objects. Prepositions as well
as adjectives are explored in [13] using 19 comparative
relationships. Previously, the work of Biederman et al. [32]
split the set of spatial relationships that can exist in a scene
into five unique types. [33] and [34] study the relationships
of objects, which typically convey information relating to
more active verbs, such as “riding” or “playing”. In our
work, we explicitly identify which types of visual features
are informative for different parts of speech.

Saliency: Computational models of visual saliency have a
rich history [1]. Approaches have ranged from early models
which used features inspired from attentional mechanisms
[1] to object driven saliency [35]. Human gaze or fixation
has been used as a proxy for attention in natural behavior.
Recent works have sought to predict these fixations for
image regions [36] and objects [37]. Both top down
and bottom up models of saliency exist. A comprehensive
evaluation of the state of the art is beyond the scope of this
paper. We refer the reader to an evaluation [38] for the
same. In contrast to most previous works, we are interested
in a more high-level notion of saliency that quantifies the

extent to which an object is noticed and remembered by
human subjects.

Importance: A related notion of importance has also been
examined in the community. The order in which people
are likely to name objects in an image was studied in [5],
while [6] predicted which objects, attributes, and scenes are
likely to be described. The order in which the attributes are
likely to be named was studied in [39]. Interestingly, [40]
and [4] found that the scale and location of an object is
related to the order in which a user tags the object in an
image. This information may be exploited for improved
object detection [40] and image retrieval [4]. In this work
we do not explore the order in which objects are mentioned
in an image. However, this would be an interesting area for
future research using abstract images.

Memorability: People have been shown to have a re-
markable ability to remember particular images in long-
term memory. [41] demonstrated this ability for images
of every day scenes, objects or events, while [42] explored
shapes of arbitrary forms. Our memory does not simply
include the gist of the picture, but also a detailed rep-
resentation allowing us to identify which precise image
we saw [43], [42]. As most of us would expect, image
memorability depends on the user context and is likely to
be subject to some inter-subject variability [44]. However,
Isola et al. [17] found that despite this expected variability,
there is also a large degree of agreement between users.
This suggests that there is something intrinsic to images
that make some more memorable than others. Isola et
al. quantified the memorability of individual images in [17]
and then identified semantic characteristics of images that
make them memorable in [18]. Works have since looked
at modifying the memorability of face images [45] and
identifying regions in images that make them memo-
rable [46]. Studying the contribution of different semantic
features (e.g. presence, locations, attributes, co-occurrences
of objects, etc.) to memorability would go a long way
in understanding memorability. Unfortunately, curating or
modifying real images to reflect minor perturbations in
these semantic features is not feasible. Abstract images
provide a promising platform for such in depth analysis.
In this paper, we explore whether the presence of certain
objects contributes to the memorability of an image. A
discussion of different models of memory retrieval [47],
[48], [49] and formation [50] are beyond the scope of this
paper.

High-level image properties: Many other photographic
properties have been studied in the literature such as photo
quality [51], saliency [1], attractiveness [52], composi-
tion [53], [54], color harmony [55], aesthetics [56] and
object importance [5]. In this work we study semantic
importance, saliency and memorability of objects, and the
relationships of these high-level concepts with each other.

Use of synthetic scenes: Synthetic images and video data
have been used to advance computer vision in a variety
of ways including evaluating the performance of tracking
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Fig. 3. A screenshot of the AMT interface used to
create the abstract scenes.

and surveillance algorithms [57], training classifiers for
pedestrian detection [58], human pose estimation [59],
learning where to grasp objects [60], evaluating image
features for matching patches [61], etc. In this paper, we
expand upon Zitnick et al. [62] to further explore the
use of abstract images for measuring both object saliency
and memorability. The related work of Zitnick et al. [63]
models the mapping between language and visual features
to automatically synthesize abstract images corresponding
to input textual descriptions.

3 GENERATING ABSTRACT IMAGES

In this section we describe our approach to generating
abstract images. The following sections describe various
experiments and analysis performed on the dataset.

There are two main concerns when generating a col-
lection of abstract images. First, they should be compre-
hensive. The images must have a wide variety of objects,
actions, relations, etc. Second, they should generalize. The
properties learned from the dataset should be applicable
to other domains. With this in mind, we choose to create
abstract scenes of children playing outside. The actions
spanned by children playing cover a wide range, and
may involve interactions with a large set of objects. The
emotions, actions and interactions between children have
certain universal properties. Children also tend to act out
“grown-up” scenes, further helping the generalization of the
results.

Our goal is to create a set of scenes that are semantically
similar. We do this in three stages. First, we ask subjects
on Amazon’s Mechanical Turk (AMT) to create scenes
from a collection of clip art. Next, a new set of subjects
are asked to describe the scenes using a one or two
sentence description. Finally, semantically similar scenes
are generated by asking multiple subjects to create scenes
depicting the same written description. We now describe
each of these steps in detail.

Initial scene creation: Our scenes are created from a
collection of 80 pieces of clip art created by an artist,
as shown in Figure 2. Clip art depicting a boy and girl
are created from seven different poses and five different
facial expressions, resulting in 35 possible combinations

for each, Figure 2(left). 56 pieces of clip art represent
the other objects in the scene, including trees, toys, hats,
animals, etc. The subjects were given five pieces of clip
art for both the boy and girl assembled randomly from
the different facial expressions and poses. They are also
given 18 additional objects. A fixed number of objects
were randomly chosen from different categories (toys, food,
animals, etc.) to ensure a consistent selection of options. A
simple background is used depicting grass and blue sky.
The AMT interface is shown in Figure 3. The subjects
were instructed to “create an illustration for a children’s
story book by creating a realistic scene from the clip art
below”. At least six pieces of clip art were required to be
used, and each clip art could only be used once. At most
one boy and one girl could be added to the scene. Each
piece of clip art could be scaled using three fixed sizes and
flipped horizontally. The depth ordering was automatically
computed using the type of clip art, e.g. a hat should
appear on top of the girl, and using the clip art scale.
Subjects created the scenes using a simple drag and drop
interface. We restrict our subjects to be from the United
States. Example scenes are shown in Figure 1.
Generating scene descriptions: A new set of subjects
were asked to describe the scenes. A simple interface was
created that showed a single scene, and the subjects were
asked to describe the scene using one or two sentences.
For those subjects who wished to use proper names in their
descriptions, we provided the names “Mike” and “Jenny”
for the boy and girl. Descriptions ranged from detailed to
more generic. Figure 1 shows an example description.
Generating semantically similar scenes: Finally, we gen-
erated sets of semantically similar scenes. For this task,
we asked subjects to generate scenes depicting the written
descriptions. By having multiple subjects generate scenes
for each description, we can create sets of semantically sim-
ilar scenes. The amount of variability in each set will vary
depending on the ambiguity of the sentence description.
The same scene generation interface was used as described
above with two differences. First, the subjects were given
a written description of a scene and asked to create a scene
depicting it. Second, the clip art was randomly chosen as
above, except we enforced any clip art that was used in the
original scene was also included. As a result, on average
about 25% of the clip art was from the original scene used
to create the written description. It is important to note that
it is critical to ensure that objects that are in the written
description are available to the subjects generating the new
scenes. However this does introduce a bias, since subjects
will always have the option of choosing the clip art present
in the original scene even if it is not described in the scene
description. Thus it is critical that a significant portion of
the clip art remains randomly chosen. Clip art that was
shown to the original scene creators, but was not used by
them are not enforced to appear.

In total, we generated 1,002 original scenes and de-
scriptions. Ten scenes were generated from each written
description, resulting in a total of 10,020 scenes. That
is, we have 1,002 sets of 10 scenes that are known to
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Fig. 4. Example sets of semantically similar scenes. The descriptions may be very specific (top) or more generic
(second row.) Notice the variety of scenes that can convey the same semantic description. The presence and
locations of objects can change dramatically, while still depicting similar meaning.

be semantically similar. Figures 1 and 4 show sets of
semantically similar scenes. See the first author’s webpage
for additional examples.

4 SEMANTIC IMPORTANCE OF VISUAL FEA-
TURES

In this section, we examine the relative semantic importance
of various scene properties or features. While our results
are reported on abstract scenes, we hypothesize that these
results are also applicable to other types of visual data,
including real images. For instance, the study of abstract
scenes may help research in semantic scene understanding
in real images by suggesting to researchers which properties
are important to reliably detect.

To study the semantic importance of features, we need
a quantitative measure of semantic importance. In this
paper, we use the mutual information shared between a
specified feature and a set of classes representing seman-
tically similar scenes. In our dataset, we have 1002 sets
of semantically similar scenes, resulting in 1002 classes.
Mutual information (MI) measures how much information
the knowledge of either the feature or the class provide of
the other. For instance, if the MI between a feature and
the classes is small, it indicates that the feature provides
minimal information for determining whether scenes are
semantically similar. Specifically, if X is the set of feature

values, and Y is the set of scene classes,

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
). (1)

Most of our features X are binary valued, while others
have continuous values between 0 and 1 that we treat as
probabilities.

In many instances, we want to measure the gain in infor-
mation due to the addition of new features. Many features
possess redundant information, such as the knowledge that
both a smile and person exist in an image. To measure
the amount of information that is gained from a feature
X over another feature Z we use the Conditional Mutual
Information (CMI),

I(X;Y |Z) =
∑
z∈Z

∑
y∈Y

∑
x∈X

p(x, y, z) log(
p(x, y|z)

p(x|z)p(y|z)
).

(2)
In the case that we want to condition upon two variables,
we compute the CMI for each variable individually and
take the minimum value [64]. All scores were computed
using 10 random 80% splits of the data. The average
standard deviation between splits was 0.002. Next, we
describe various sets of features and analyze their semantic
importance using Equations (1) and (2).

Occurrence: We begin by analyzing the simple features
corresponding to the occurrence of the various objects that
may exist in the scene. For real images, this would be the
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Fig. 5. The mutual information measuring the dependence between classes of semantically similar scenes and
the (left) occurrence of obejcts, (top) co-occurrence, relative depth and position, (middle) person attributes and
(bottom) the position relative to the head and hand, and absolute position. Some mutual information scores are
conditioned upon other variables (see text.) The pie chart shows the sum of the mutual information or conditional
mutual information scores for all features. The probability of occurrence of each piece of clip art occurring is
shown to the left.
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same information that object detectors or classifiers attempt
to collect [20]. For occurrence information we use two
sets of object types, instance and category. In our dataset,
there exist 58 object instances, since we group all of the
variations of the boy together in one instance, and similarly
for girl. We also created 11 categories by grouping objects
of similar type together. These categories, such as people,
trees, animals, and food are shown in Figure 2. The ranking
of instances and categories based on their MI scores can
been seen in Figure 5. Many of the results are intuitive.
For instance, objects such as the bear, dog, girl or boy
are more semantically meaningful than background objects
such as trees or hats. In general, categories of objects have
higher MI scores than instances. The semantic importance
of an object does not directly depend on how frequently
it occurs in the scenes. For instance, people (97.6%) and
trees (50.3%) occur frequently but are less semantically
important, whereas bears (11.1%) and soccer balls (11.5%)
occur less frequently but are important. Interestingly, the
individual occurrence of boy and girl have higher scores
than the category people. This is most likely caused by the
fact that people occur in almost all scenes (97.6%), so the
category people is not by itself very informative.

Person attributes: Since the occurrence of the boy and
girl are semantically meaningful, it is likely their attributes
are also semantically relevant. The boy and girl clip art have
five different facial expressions and seven different poses.
For automatic detection methods in real images the facial
expressions are also typically discretized [65], while poses
are represented using a continuous space [66]. We compute
the CMI of the person attributes conditioned upon the boy
or girl being present. The results are shown in Figure 5. The
high scores for both pose and facial expression indicate that
human expression and action are important attributes, with
expression being slightly higher.

Co-occurrence: Co-occurrence has been shown to be a
useful feature for contextual reasoning about scenes [67],
[68], [30]. We create features corresponding to the co-
occurrence of pairs of objects that occur at least 100
times in our dataset. For our 58 object instances, we
found 376 such pairs. We compute CMI over both of
the individual objects, Figure 5. Interestingly, features that
include combinations of the boy, girl and animals provide
significant additional information. Other features such as
girl and balloons actually have high MI but low CMI, since
balloons almost always occur with the girl in our dataset.

Absolute spatial location: It is known that the position
of an object is related to its perceived saliency [69] and
can even convey its identity [70]. We measure the position
of an object in the image using a Gaussian Mixture Model
(GMM) with three components. In addition, a fourth com-
ponent with uniform probability is used to model outliers.
Thus each object has four features corresponding to its
absolute location in an image. Once again we use the
CMI to identify the location features that provide the
most additional information given the object’s occurrence.
Intuitively, the position of the boy and girl provide the most
additional information, whereas the location of toys and

hats matters less. The additional information provided by
the absolute spatial location is also significantly lower than
that provided by the features considered so far.

Relative spatial location: The relative spatial location of
two objects has been used to provide contextual information
for scene understanding [71], [72]. This information also
provides additional semantic information over knowledge
of just their co-occurrence [32]. For instance, a boy holding
a hamburger implies eating, where a hamburger sitting on
a table does not. We model relative spatial position using
the same 3 component GMM with an outlier component as
was used for the absolute spatial model, except the positions
are computed relative to one of the objects. The CMI was
computed conditioned on the corresponding co-occurrence
feature. As shown in Figure 5, the relative positions of the
boy and girl provide the most information. Objects worn by
the children also provide significant additional information.

One interesting aspect of many objects is that they are
oriented either to the left or right. For instance the children
may be facing in either direction. To incorporate this infor-
mation, we computed the same relative spatial positions as
before, but we changed the sign of the relative horizontal
positions based on whether the reference object was facing
left or right. Interestingly, knowledge of whether or not a
person’s gaze is directed towards an object increases the
CMI score. This supports the hypothesis that eye gaze is
an important semantic cue.

Finally, we conducted two experiments to measure how
much information was gained from knowledge of what
a child was holding in their hands or wearing on their
head. A single feature using a Gaussian distribution was
centered on the children’s heads and hands. CMI scores
were conditioned on both the object and the boy or girl.
The average results for the boy and girl are shown in Figure
5. This does provide some additional information, but not
as much as other features. As expected, objects that are
typically held in the hand and worn on the head have the
highest score.

Depth ordering: The relative 3D location of objects can
provide useful information for their detection [73], [74].
The depth ordering of the objects also provides important
semantic information. For instance, foreground objects are
known to be more salient. Our depth features use both ab-
solute and relative depth information. We create 3 absolute
depth features for each depth plane or scale. The relative
features compute whether an object is in front, behind or on
the same depth plane as another object. The absolute depth
features are conditioned on the object appearing while the
relative depth features are conditioned on the corresponding
pair co-occurring. Surprisingly, as shown in Figure 5, depth
provides significant information, especially in reference to
absolute and relative spatial position.

There are numerous interesting trends present in Figure
5, and we encourage the reader to explore them further.
To summarize our results, we computed the sum of the
MI or CMI scores for different feature types to estimate
the total information provided by them. The pie chart in
Figure 5 shows the result. It is interesting that even though
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Fig. 6. Retrieval results for various feature types. The
retrieval accuracy is measured based on the number of
correctly retrieved images given a specified number of
nearest neighbors.

there are relatively few occurrence features, they still as
a set contain more information than most other features.
The person attribute features also contain significant infor-
mation. Relative spatial and depth features contain similar
amounts of information as well, but spread across a much
greater number of features. It is worth noting that some
of the features contain redundant information, since each
was only conditioned upon one or two features. The real
amount of information represented by a set of features will
be less than the sum of their individual MI or CMI scores.

5 MEASURING THE SEMANTIC SIMILARITY
OF IMAGES

The semantic similarity of images is dependent on the var-
ious characteristics of an image, such as the object present,
their attributes and relations. In this section, we explore the
use of visual features for measuring semantic similarity. For
ground truth, we assume a set of 10 scenes generated using
the same sentence are members of the same semantically
similar class, Section 3. We measure semantic similarity
using nearest neighbor search, and count the number of
nearest neighbors from the same class. We study the recall
accuracy using various subsets of our features. In each set,
the top 200 features are selected based on MI or CMI score
ranking. We compare against low-level image features such
as GIST [75] and Spatial Pyramid Models (SPM) [76] since
they are familiar baselines in the community. We use a
GIST descriptor with 512 dimensions and a 200 visual word
SPM reduced to 512 dimensions using PCA. To account for
the varying usefulness of features for measuring semantic
similarity, we learn a linear warping of the feature space
using the Large Margin Nearest Neighbour (LMNN) metric
learning approach [19] trained on a random 80% of the
classes, and tested on the rest. After warping, the nearest
neighbors are found using the Euclidean distance.

Figure 6 shows that the low-level features GIST and SPM
perform poorly when compared to the semantic (clip art)
features. This is not surprising since semantically important
information is commonly quite subtle, and scenes with
very different object arrangements might be semantically

similar. The ability of the semantic features to represent
similarity shows close relation to their MI or CMI score in
Section 4. For instance the combination of occurrence and
person attributes provides a very effective set of features. In
fact, occurrence with person attributes has nearly identical
results to using the top 200 features overall. This might
be partially due to overfitting, since using all features does
improve performance on the training dataset.

6 RELATING TEXT TO VISUAL PHENOMENA

Words convey a variety of meanings. Relating these mean-
ings to actual visual phenomena is a challenging problem.
Some words such as nouns, may be easily mapped to the
occurrence of objects. However, other words such as verbs,
prepositions, adjectives or adverbs may be more difficult.
In this section, we study the information shared between
words and visual features. In Figure 7, we show for words
with different parts of speech the sum of the MI and CMI
scores over all visual features. Notice that words with ob-
vious visual meanings (Jenny, kicking) have higher scores,
while those with visual ambiguity (something, doing) have
lower scores. Since we only study static scenes, words
relating to time (before, finally) have low scores.

We also rank words based on different types of visual
features in Figure 7. It is interesting that different feature
types are informative for different parts of speech. For
instance, occurrence features are informative of nouns,
while relative position features are predictive of more verbs,
adverbs and prepositions. Finally, we show several exam-
ples of the most informative non-noun words for different
relative spatial position features in Figure 7. Notice how
the relative positions and orientations of the clip art can
dramatically alter the words with highest score.

7 OBJECT SALIENCY

In Section 4 we computed the semantic importance of
different visual features. In particular, we analyzed how
much the occurrence of each object contributes to the
semantic meaning of an image. We now study a related
but distinct task: How salient is an object in an image?
An object is salient if it is noticed and remembered. In
other words, if subjects are shown a scene and then the
same scene with an object removed, will they notice the
difference?

Our experimental set up is similar to that of Isola
et al.[17]. We show subjects a series of scenes for one
second each. Subjects are instructed to press the ’r’ key
when they detect a repeated scene. Since our goal is to
determine the saliency of an object in a subject’s high-
level representation of a scene, we introduce a significant
delay of approximately four minutes between when the
subjects see the target image and its altered version. This
is in contrast with tests for visual change detection [77]
that show the target and altered image consecutively one
after the other. Filler images are shown between the display
of the target image and its altered version. Also, filler
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Fig. 7. The words with the highest total MI and CMI scores across all features for different part of speech (left).
The words with highest total scores across different features types (top-right). Colors indicate the different parts
of speech. Top non-nouns for several relative spatial features using object orientation (bottom-right).

Fig. 8. The saliency (top) and memorability (bottom) for different types of objects. Both are measured using a
series of experiments in which subjects are asked to identify scenes they have already seen. The saliency is
computed as the difference between the hit rate of intact scenes minus the hit rate of scenes in which an object
was removed.
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repeats are shown that occur within a shorter duration (2-
17 seconds). The filler repeats involve presenting the same
filler image again, unaltered. Thus, these serve as vigilance
tests to identify workers who are not paying attention or
have lost focus.

We randomly selected 4322 scenes as our target scenes.
The rest of the scenes in our dataset were used as fillers.
One object was chosen to remove from each scene such
that each object was removed from an equal number of
scenes to the best extent possible. On average each object
was removed 148 times (2 subjects on 74 scenes.) A total of
857 unique users participated in our study. For each object
we recorded its average hit rate, that is the percentage
of target scenes that were labeled as repeating. A scene
should have a low hit rate if the object removed was salient.
However, a scene may also have a low hit rate if it is
simply not memorable. To separate these two confounding
factors we ran a second study similar to the first one, but
where the target image is repeated without any alterations.
The difference in the average hit rates of intact scenes and
hit rates of altered scenes gives us an accurate measure of
saliency. A high score indicates the object is salient since
their hit rate on intact scenes is significantly greater than
their hit rate on the altered scenes.

Figure 8(top) shows the difference in hit rates. Inter-
estingly, we find a strong correlation (0.58) between our
measure of saliency and semantic importance. We see that
objects that have high semantic importance (Figure 5)
significantly reduce the hit rate when they are removed, i.e.,
these objects have high saliency. For instance, if the boy,
bear or tent is removed the pair of scenes are not perceived
as being the same. It is worth noting that objects that appear
smaller or in the background are less salient, such as the
sunglasses, frisbee and bouncy. One interesting object is
the cat. The cat has high semantic importance, since it is
typically described when in the scene. However, since cats
typically appear in the background and are not the focus of
the scene they have low saliency. Surprisingly for several
different objects, their scenes have higher hit rates when
the objects are removed, such as sunglasses and frisbee.
One possible explanation is the subjects didn’t remember
these objects upon initially being shown the scene. When
viewing an intact scene a second time the objects may
be noticed. Since these objects were not remembered, the
subjects conclude the scenes are different.

8 MEMORABILITY

In the previous section, we determined object saliency by
measuring whether an object was noticed and remembered
by the subjects. In this section, we explore the memorability
of scenes, and whether scenes containing different objects
are more likely to be remembered. The memorability of
scenes containing different objects is not just dependent on
the semantic importance or saliency of the objects present
as measured in Sections 4 and 7, but also on the novelty
of the objects and their relative locations. Even scenes
containing common objects may be highly memorable if

the objects are in an unusual configuration. We measure
memorability using the same experimental setup as Section
7 using 4322 intact scenes. In Figure 8(bottom) we show
the average memorability for scenes containing each object.
The objects with high semantic importance are also gen-
erally in scenes with higher memorability. The correlation
between semantic importance and contribution of an object
to memorability was found to be 0.31. However, some ob-
jects such as ketchup and crown occur in highly memorable
scenes but have lower semantic importance. This may be
due to the fact that these objects are often held or worn by
the highly salient and semantically important boy and girl
and are thus more memorable. Conversely the commonly
occurring slide is less memorable while being semantically
more important. Due to the numerous factors contributing
to memorability, the overall difference between objects was
much lower for average scene memorability than for object
saliency.

A deeper investigation of the differences between these
related but distinct concepts: semantic importance, saliency
and memorability is worth pursuing. Abstract scenes pro-
vide an appropriate platform to study this. Studying these
concepts with regards to other semantic features such
as object co-occurrence, relative location and orientation,
attributes, etc. is part of future work.

9 DISCUSSION

The potential of using abstract images to study the high-
level semantic understanding of visual data is especially
promising. Abstract images allow for the creation of huge
datasets of semantically similar scenes that would be im-
possible with real images. Furthermore, the dependence on
noisy low-level object detections is removed, allowing for
the direct study of high-level semantics.

Numerous potential applications exist for semantic
datasets using abstract images, which we’ve only begun to
explore in this paper. High-level semantic visual features
can be learned or designed that better predict not only
nouns, but other more complex phenomena represented
by verbs, adverbs and prepositions. If successful, more
varied and natural sentences can be generated using visually
grounded natural language processing techniques [7], [8],
[9], [10].

One often overlooked aspect of generating written de-
scriptions of images is the need for commonsense knowl-
edge. Determining which aspects of a scene are common-
place or surprising is essential for generating interesting
and concise sentences. Many aspects of the scene may
also be indirectly implied given commonsense knowledge.
For instance, a reader may assume a person is outside
if they have knowledge that they are using an umbrella.
A promising approach for gathering this commonsense
knowledge is through the collection of a large dataset of
abstract scenes depicting real world scenes.

Finally, we hypothesize that the study of high-level
semantic information using abstract scenes will provide
insights into methods for semantically understanding real
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images. Abstract scenes can represent the same complex
relationships that exist in natural scenes, and additional
datasets may be generated to explore new scenarios or
scene types. Future research on high-level semantics will
be free to focus on the core problems related to the
occurrence and relations between visual phenomena. To
simulate detections in real images, artificial noise may be
added to the visual features to study the effect of noise
on inferring semantic information. Finally by removing the
dependence on varying sets of noisy automatic detectors,
abstract scenes allow for more direct comparison between
competing methods for extraction of semantic information
from visual information.
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