High Performance Computing: Tools and Applications

Edmond Chow
School of Computational Science and Engineering
Georgia Institute of Technology

Lecture 12
Many functions will create their own team of threads
You usually *do not* want to call these multithreaded functions from a parallel region
If calling from a parallel region using all the cores, you usually want to set the number of threads to 1 (library function operates sequentially)
All functions are thread-safe
environment variable `MKL_NUM_THREADS` to set *maximum* number of threads used by MKL
LAPACK in MKL

- LAPACK is a FORTRAN multithreaded linear algebra library
- LAPACKE is the C interface to LAPACK
- Function for computing a Cholesky factorization (of a symmetric positive definite matrix)

```c
#include <mkl.h>

lapack_int LAPACKE_dpotrf(int matrix_layout,
                          char uplo,
                          lapack_int n,
                          double *a,
                          lapack_int lda);
```
LAPACKE_dpotrf

- matrix_layout = LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR
- uplo = U or L (use only a triangular portion of a)
- n = number of rows and columns
- a = array of size lda*n containing the matrix
- lda = leading dimension of a

- For efficiency, you may want have rows/cols aligned on 64 byte boundaries (use lda for this)
- On output, the array a is overwritten by the Cholesky factor. Which factor is computed depends on uplo.
- Return value 0 means success.
- Positive return value means a negative pivot was encountered.
- Negative return value means a parameter has an illegal value.
C interface to BLAS

Example: compute \(C = \alpha \cdot \text{op}(A) \cdot \text{op}(B) + \beta \cdot C \)

```c
#include <mkl.h>

void cblas_dgemm(const CBLAS_LAYOUT Layout,  // CblasRowMajor or CblasColMajor
                  const CBLAS_TRANSPOSE transa,  // CblasNoTrans or CblasTrans
                  const CBLAS_TRANSPOSE transb,  // CblasNoTrans or CblasTrans
                  const MKL_INT m,               // C is m by n
                  const MKL_INT n,
                  const MKL_INT k,               // inner dimension
                  const double alpha,
                  const double *a,
                  const MKL_INT lda,
                  const double *b,
                  const MKL_INT ldb,
                  const double beta,
                  double *c,
                  const MKL_INT ldc);
```
High resolution timing could be performed using the `rdtsc` instruction.

```c
unsigned long int start, stop;
start = __rdtsc();
...
stop = __rdtsc();
```

To measure how many ticks there are in a second, you could time `sleep(1);`

It is also possible to access the `rdtsc` instruction on Gnu compilers by inserting assembly instructions.
Example

```c
#include <stdio.h>
#include <unistd.h> // sleep

void main()
{
    unsigned long int start, stop;

    start = __rdtsc();
    sleep(1);
    stop   = __rdtsc();

    printf("%ld\n", stop-start);
}
```
Killing your jobs

- Log onto the mic coprocessors and kill any of your runaway jobs.
- On joker, your uid on the host and on the coprocessors may be different, so you may have permissions problems. Try:

 `ssh mic0 pkill bd_mic`

- To check your uid, run `id` on the host and on the coprocessor.