
Towards Neural Acceleration for General-
Purpose Approximate Computing

Hadi Esmaeilzadeh† Adrian Sampson† Luis Ceze† Doug Burger‡
†University of Washington ‡Microsoft Research

{hadianeh,asampson,luisceze}@cs.washington.edu dburger@microsoft.com

Abstract
Energy efficiency is becoming crucial to realizing the benefits of
technology scaling. We introduce a new class of low-power ac-
celerators called Neural Processing Units (NPUs). Instead of be-
ing programmed, NPUs learn to behave like general-purpose code
written in an imperative language. After a training phase, NPUs
mimic the original code with acceptable accuracy. We describe an
NPU-augmented architecture design incorporating a digital neural
network implementation and a mechanism for invoking it from the
main core. Simulation results show average speedups and energy
savings both on the order of 2× with little quality loss for pro-
grams from diverse domains including signal processing, gaming,
graphics, compression, machine learning, and image processing.

1. Introduction
The need for performance and energy efficiency in light of tech-
nology scaling limitations (dark silicon [8]) has motivated a drive
towards specialization and acceleration. Recent work has also be-
gun to exploit the fact that many applications can tolerate imprecise
computation, which can be cheaper to provide. We leverage these
two trends and introduce Neural Processing Units (NPUs), a new
class of configurable accelerators for approximate computation.

Many classes of computations do not require universal preci-
sion. Image rendering, signal processing, augmented reality, and
speech recognition can tolerate errors in substantial portions of
their computation [6, 16, 24]. Architectures that provide these
“soft” applications with optional low-precision operation can save
significantly in both time and energy [6, 9, 18]. However, these
previous approaches are limited by the costs of bookkeeping in
general-purpose computing: instruction fetch, decode, and schedul-
ing; memory accesses; loops and control flow; etc.

We introduce NPUs as a new class of accelerators without
the overheads intrinsic to traditional general-purpose CPUs. NPUs
act as accelerators for approximate code, implementing imprecise
computations that mimic portions of the application where inac-
curacy is tolerable. By completely replacing certain complex com-
putations, NPUs can help reduce control flow costs that prior ap-
proaches to approximate computing or acceleration fail to address.

Unlike traditional accelerators and configurable computing
units, NPUs are not programmed: instead, they learn to emulate
the original computation using training input and output samples.
The target code is a “black box” from the NPU’s perspective: the
algorithm and its implementation are irrelevant when training the
accelerator. Hardware neural networks are fast and low-power, so
executing a trained NPU can be vastly more efficient than running
the original code. While previous work on efficient hardware neural
networks has mainly considered applying them for learning tasks,
NPUs are able to leverage them to accelerate general-purpose im-
perative code.

2. The NPU Program Transformation
Figure 1 depicts the NPU transformation, where a portion of a
program’s control flow graph is substituted with an invocation of
a neural network. The transformation is transparent from the pro-

grammer’s perspective: the system automatically trains the neural
network and transforms the code to take advantage of it. The train-
ing process treats the code as a black box, so while the input and
output of the target code must be in a form that can be learned by a
neural network, the target code’s implementation is unrestricted.

2.1 Applicability
Neural networks are intrinsically imprecise and will not perfectly
imitate general imperative code. Therefore, programs that take ad-
vantage of them must incorporate application-level tolerance of im-
precision. Prior work has explored this application-level tolerance
in the context of faulty architectural components and approximate
algorithms [6, 24, 25]. The NPU transformation applies to applica-
tions containing code whose output can be imprecise.

As an example, edge detection is a widely applicable image pro-
cessing computation. Many implementations of edge detection use
the Sobel filter, a 3×3 matrix convolution that approximates the im-
age’s intensity gradient. Because the Sobel filter is fundamentally
an approximation, slight errors in its computation are unlikely to
cause major degradation of edge detection quality. In this example,
an NPU can be used to replace the Sobel filter computation and
accelerate the edge detection algorithm.

To be most effective, NPUs must replace an expensive function:
one that would require many CPUs cycles to compute precisely.
Ideally, the target function includes loops and other complex con-
trol flow—the cost of this complexity can be elided when comput-
ing on an NPU. The profitability of NPUs for smaller functions
depends on the overhead of their implementation; we explore this
trade-off in our evaluation (Section 5). The function-approximation
properties of neural networks rely on their ability to interpolate,
generalizing from examples to other inputs. Hence, NPUs are best
applied to code that resembles a smooth function, for which new in-
put/output pairs will resemble training data. NPUs are less likely to
effectively approximate “chaotic” code, in which even large train-
ing sets can fail to represent the function’s full range of behavior.

2.2 Programming Model
The use of NPUs has two implications for the programming model:
the program must be able to tolerate imprecision in part of its
computation; and it must be possible to isolate a portion of code
for offloading to the NPU.

Approximation. Prior work has developed programming models
that incorporate approximation in disciplined ways to allow soft-
ware to remain robust in the face of errors in certain parts of the
program [6, 24]. These languages allow the programmer to specify
code or data that may be executed with relaxed semantics where im-
precision is expressly permitted. The feasibility of NPUs depends
on such a programming model: the NPU transformation can only
apply to code when the programmer has allowed to be imprecise.
Here, we use EnerJ [24] as our programming language.

Target code identification. To apply the NPU transformation, we
need to identify a code slice that: (1) is pure and has no side effects;
(3) is expensive enough; and (2) has fixed-size inputs and outputs.
the code may not dynamically write an unbounded amount of data
to a variable-length array.

1

Target Code

(a) Original CFG

NPU

(b) Transformed program

NPU

Core

(c) Architecture with NPU

Figure 1: NPU transformation takes an input program (a) and replaces a portion of its CFG (the target code) with an invocation of a
neural network (b). During execution (c), the program runs mainly on the CPU, sending inputs to and receiving outputs from the NPU.

1 i n t s o b e l I n t e n s i t y (i n t p [3] [3]) {
i n t x , y , r ;

3 x = (p [0] [0] + 2 ∗ p [0] [1] + p [0] [2]) ;
x −= (p [2] [0] + 2 ∗ p [2] [1] + p [2] [2]) ;

5 y = (p [0] [2] + 2 ∗ p [1] [2] + p [2] [2]) ;
y −= (p [0] [0] + 2 ∗ p [1] [1] + p [2] [0]) ;

7 x = pow (x , 2) ;
y = pow (y , 2) ;

9 r = (i n t) pow (x + y , 0 . 5) ;
i f (r >= 256)

11 r = 255 ;
re turn r ;

13 }

(a) Imperative implementation of the Sobel filter

1 i n t s o b e l I n t e n s i t y (i n t p [3] [3]) {
i n t r ;

3 enq . d p [0] [0] ;
enq . d p [0] [1] ;

5 enq . d p [0] [2] ;
enq . d p [2] [0] ;

7 enq . d p [2] [1] ;
enq . d p [2] [2] ;

9 enq . d p [1] [1] ;
enq . d p [2] [0] ;

11 deq . d r ;
re turn r ;

13 }

(b) Replacement NPU invocation

Figure 2: Example imperative code and its replacement NPU invocation. In (a), the computation is implemented in a C-like language.
In (b), we show the assembly instructions that invoke the NPU.

These constraints are not specific to the NPU transformation
and would be appropriate for any code-centric approach to approx-
imate computing, such as Relax [6]. Figure 2a shows an example
computation that satisfies the constraints. This function implements
a Sobel filter as part of an edge detection algorithm. The applica-
tion can tolerate imprecision in the result value, r. The argument
and result types have fixed size: nine words and one word respec-
tively. Finally, the body of the computation is costly enough that an
NPU invocation may be faster. More complex target code including
heavier control flow would represent even greater potential benefit.

Similar candidate code may be discovered automatically via a
static analysis over code written in an approximation-aware lan-
guage. In this paper, however, we consider an approach based on
programmer-provided hints: the programmer explicitly annotates
a function in a program as a candidate for NPU replacement. In
our experience with approximate programs, computations satisfy-
ing these constraints are easy to identify by hand (see Section 5).
However, while this approach limits the NPU transformation to dis-
crete code regions, a more sophisticated analysis would allow finer-
grained slices of code—not just explicit functions—to be replaced.

2.3 Training
Before the program can use an NPU at runtime, the NPU must be
trained on executions of the target code to mimic the code. Training
may occur off-line, during compilation or deployment, or on-line, in
parallel with the in-vivo execution of the target code. While on-line
training may be appropriate in cases where appropriate test inputs
are unavailable, this paper focuses on off-line training.

2.4 Execution
At run time, an NPU-aware program must configure the NPU
according to the parameters derived during the training phase. An

ISA extension (Section 3.1) allows the program to communicate
the neural network’s topology and weights to the NPU before it
first invokes the NPU (e.g., when the program is started). Then,
when the target function would otherwise have been invoked, the
program sends inputs to the NPU and collects the resulting outputs
as shown in Figure 2b. The compiler can omit the target code and
the variables used for its intermediate values.

3. Architecture
There are a variety of different implementation strategies for NPUs
with varying trade-offs in performance, power, area, and com-
plexity. Both hardware and software neural network implementa-
tions are possible. In software, traditional CPU and highly paral-
lel GPU implementations may be useful if the replaced imperative
code is very coarse-grained. In systems equipped with configurable
computing fabrics, NPUs may be implemented on FPGAs [27] or
FPAAs [21]. Neural network ASIC designs are likely to be even
more power-efficient and low-latency; prior work has explored both
digital [7] and analog [3] neural network implementations. In this
section, we describe an ASIC design for an NPU operating at the
same critical voltage as the main core.

3.1 NPU ISA Support
The NPU is a variable-delay functional unit that communicates
with the rest of the core via FIFO queues. The CPU–NPU inter-
face consists of three queues: one for sending and retrieving the
configuration, one for sending the inputs, and one for retrieving
the neural network’s outputs. The ISA is extended with four NPU
queuing instructions. These instructions assume that the processor
is equipped with a single NPU; if the architecture supports multiple
NPUs or multiple stored configurations per NPU, the instructions

2

may be parameterized with an immediate operand reflecting the
NPU configuration’s unique identifier.

• enq.c %reg: enqueue register into the NPU config FIFO.
• deq.c %reg: dequeue a value from the NPU config FIFO.
• enq.d %reg: enqueue register into the NPU input FIFO.
• deq.d %reg: dequeue from the NPU output FIFO to register.

To communicate with the NPU, the compiler emits a series of
queueing instructions. To set up the NPU at program start time, the
program executes a series of enq.c instructions to send configura-
tion parameters—number of inputs and outputs, network topology,
and neuron weights—to the NPU. The operating system uses deq.c
instructions to save the NPU configuration during context switches.
To invoke the NPU, the program executes enq.d repeatedly to send
inputs to the configured neural network. As soon as all the inputs
of the neural network are enqueued, the NPU starts computation
and puts the results in its output FIFO. The program executes deq.d
repeatedly to retrieve output values from the invocation.

3.2 Integrating the NPU Into the Processor Pipeline
We discuss the microarchitectural support required for integrating
the NPU with an speculative OoO pipeline.

Instruction scheduling and issue. To guarantee correct commu-
nication with the NPU, the processor must issue NPU instructions
in order. The renaming login and the scheduler will therefore treat
all NPU instructions as dependent. Furthermore, the scheduler only
issues an enqueue instruction if the corresponding FIFO is not full.
Similarly, the dequeue instruction is only issued if the correspond-
ing FIFO is not empty. To ensure correct speculative execution,
the output FIFO maintains two head pointers: a speculative head
and a non-speculative head. The speculative head pointer is up-
dated when a dequeue instruction is issued; the non-speculative
head pointer is only updated when the instruction commits.

Speculative execution and pipeline flushes. The processor can
issue the enq.d and deq.d instructions speculatively. In case of
a branch or dependence misspeculation, it must be possible to
roll back the speculative operations. In the event of a pipeline
flush, the processor sends the number of squashed enq.d and deq.d
instructions to the NPU. The NPU adjusts its input FIFO tail pointer
and output FIFO speculative head pointer accordingly. The NPU
also resets its internal control state if it was processing any of the
invalidated inputs and adjusts the tail pointer of the output FIFO to
invalidate any outputs that are based on the invalidated inputs.

Commit. Since the enqueue and dequeue instructions can be ex-
ecuted speculatively, the head pointer of the input FIFO can only
be updated—and consequently the entries recycled—if: (1) the en-
queue instruction commits; and (2) the NPU completes processing
that input. When an enq.d instruction reaches the commit stage,
a signal is sent to the NPU to notify it that the input FIFO head
pointer can be updated. The entry will only be recycled when the
subsequent deq.d instruction commits.

3.3 Reconfigurable NPU Architecture
This section details the design of the NPU itself as shown in Fig-
ure 3a. The design is reconfigurable: it can implement many dif-
ferent neural network topologies. As shown in Figure 3a, the NPU
contains eight identical processing engines (PEs) and one scaling
unit. Although the design can scale to larger and smaller numbers
of PEs, we find that eight PEs can exploit the parallelism in the
neural networks while larger NPUs exhibit diminishing returns in
performance. The scaling unit scales the neural network’s inputs
and outputs using scaling factors defined in the NPU configuration
process. Figure 3b shows the internal structure of a single PE.

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Bus
Scheduler

Scheduling FIFO

Output FIFO

Input FIFO

Config FIFO

Scaling
Unit

(a) An 8-PE NPU

Multiply-Add
Unit

Sigmoid
Unit

Weight Cache

Output Register File

Input FIFO

Controller

(b) A single processing engine

Figure 3: Schematics for an NPU with 8 processing engines
(PEs) and for a single PE.

The NPU is statically scheduled. The scheduling information is
part of the NPU configuration, which is based on the neural net-
work topology derived during the training process. Recall that the
program executes enq.c instructions that send this configuration to
the NPU. In the NPU’s schedule, each neuron in the neural network
is assigned to one of the eight PEs. The topology determines a static
schedule for the timing of the PE computations, bus accesses, and
queue accesses. The NPU stores the bus scheduling information in
its scheduling FIFO (shown in Figure 3a). Each entry in this FIFO
schedules the bus to broadcast a value from a PE or the input FIFO
to a set of destination PEs or the output FIFO. A scheduling FIFO
entry consists of a source and a destination. The source is either
the input FIFO or the identifier of a PE along with an index into its
output register file (shown in Figure 3b). The destination is either
the output FIFO or a set of PEs.

Each PE performs the computation for all of its assigned neu-
rons. Namely, because the NPU implements a sigmoid-activation
multilayer perceptron, each neuron computes its output as y =
sigmoid(

∑
i(xi × wi)) where xi is an input to the neuron and

wi is its corresponding weight. As shown in Figure 3b, the weight
cache (a circular buffer) stores the weights.

4. Compilation and Training
To take advantage of an NPU, a program must train the neural
network to emulate the target code. First, the compiler observes
the inputs and outputs of the target code. Then, using this collected
data, it executes a neural network’s supervised learning algorithm.
Finally, the compiler produces a new binary that invokes the NPU
instead of the original code. Except for annotating the target code,
this entire compiltion process is automatic.

4.1 Observation Phase
In the first phase, the compiler collects input/output pairs for the
target code that reflect real program executions. This in-context ob-
servation allows us to train the NPU on a realistic data set, improv-
ing its recall accuracy during execution. The compiler produces an
instrumented binary for the source program that includes probes on
the input and output of the target code. Specifically, the candidate
function records its arguments and return value at every execution.
The output of this phase is a training data set.

4.2 Training Phase
Next, the compiler uses the training examples to produce a neu-
ral network configuration to be used as an NPU. There are a va-
riety of types of artificial neural networks in the literature, but we
narrow the search space to multilayer perceptrons (MLPs) due to

3

their broad applicability. To train an MLP, the compiler must select
parameters—a learning rate, training epoch count, an expected er-
ror value—that balance between overtraining and accuracy. Empiri-
cally, we find that a learning rate of 0.3, an epoch count of 5000, and
an expected error of 0.01 work well for a variety of applications. In
addition to running the backpropagation training algorithm [23],
this phase must select an optimal network topology that balances
between accuracy and efficiency. An MLP consists of a set of neu-
rons organized into layers: the input layer, any number of “hidden”
layers, and the output layer. A larger, more complex network offers
better accuracy potential but is likely to be slower and less power-
efficient than a small, simple neural network.

We use a simple heuristic to choose the topology, guided by
the mean squared error (MSE) of the neural network when recall-
ing a subset of the observed data. The error evaluation uses a typi-
cal cross-validation approach: the compiler partitions the data col-
lected during observation into a training set and an evaluation set.
The training set, which consists of 90% of the observed data, is
used to drive the supervised learning algorithm. Once the neural
network is trained, its accuracy is assessed over the evaluation set.
To choose an acceptable network topology, the compiler starts with
two neurons and a single hidden layer. It trains this network us-
ing the above parameters and evaluates its MSE when recalling the
evaluation data. If the neural network exceeds the target error rate,
it doubles the number of neurons in the hidden layer and trains
again. If the number of neurons in the last hidden layer is greater
than the number of inputs to the layer, the compiler adds a new hid-
den layer. This process repeats until the desired error level is met or
the neural network reaches the maximum size allowed by the NPU.

The output from this phase consists of a neural network topology—
specifying the number of layers and the number of neurons in each
layer—along with the weight for each neuron and the normaliza-
tion range for each input and output.

4.3 Scheduling the Neural Network on the NPU
Given the results of the training phase, the compiler configures the
NPU to execute the discovered neural network topology. As Sec-
tion 3.3 describes, the compiler must translate the neural network
parameters into a low-level NPU configuration including a static
schedule for the NPU’s operation.

4.4 Embedding Parameters in the Binary
Finally, the compiler produces a new binary that invokes the NPU.
The target code is not included in this binary; instead, the compiler
emits special instructions (Section 3.1) to configure and execute
the neural network. Before a program uses the NPU for the first
time, it executes the enq.c instructions produced by the scheduling
algorithm to set up the neural network according to the topology
and neuron weights found during training. To invoke the replaced
function, the compiler emits end.q and deq.d instructions at every
call site as illustrated in Figure 2b.

5. Evaluation
Table 1 lists the benchmarks used in this evaluation. The applica-
tion domains—signal processing, gaming, compression, machine
learning, 3D graphics, and image processing—are selected for their
usefulness to general applications and tolerance to imprecision.
The domains are commensurate with evaluations of previous work
on approximate computing [1, 9, 17, 18, 24, 25]. To select our
benchmarks, we began with the applications used in the evalua-
tion of EnerJ [24] and Truffle [9]. Of these, fft, jmeint, and ray-
tracer contained code segments that were amenable to the NPU
transformation. We identified three new approximate applications
(jpeg, kmeans, and sobel) and found that each of them had NPU-
amenable code segments. We did not reject any applications based

0%

25%

50%

75%

100%

fft jmeint jpeg kmeans raytrace sobel geomean

%
 o

f T
ra

ns
fo

rm
ed

 D
yn

am
ic

 In
st

ru
ct

io
ns

Figure 4: Percentage of dynamic instructions subsumed by NPU.

Table 2: NPU microarchitectural parameters.

Parameter Configuration

Number of PEs 8
Bus Schedule FIFO 512 × 20-bit
Input FIFO 128 × 32-bit
Output FIFO 128 × 32-bit
Config FIFO 8 × 32-bit

PE Weight Cache 512 × 33-bit
PE Input FIFO 8 × 32-bit
PE Output Register File 8 × 32-bit
Sigmoid Unit LUT 128 × 32-bit
Multiply-Add Unit 32-bit Single Precision FP

on performance, energy, or accuracy shortfalls. Like previous work,
we evaluate potential energy and performance gains in the context
of the resulting loss of precision (or reduction in quality of service).

The Java source code for each benchmark was annotated as de-
scribed in Section 2.2: we marked a single pure function with fixed-
size inputs and outputs for offloading to the NPU. No substantial
algorithmic changes were made to the benchmarks to allow them
to accommodate the NPU transformation. Qualitatively we found it
straightforward to identify a reasonable candidate function for the
NPU transformation in each benchmark.

In most of these benchmarks, the target code contains complex
control flow including conditionals, loops, and method calls. In
jmeint, the target code contains the bulk of the algorithm, including
many nested method calls. In jpeg, the NPU transformation sub-
sumes the discrete cosine transform and quantization phases, each
of which contains multiple function calls and loops. In kmeans,
the target code includes centroid and distance calculations, which
themselves include complex control structures. Because the target
code in this benchmark is inside a loop, part of the output of one
NPU invocation is used as the input to the next invocation. In ray-
tracer and sobel, the target code is simpler and finer-grained, con-
sisting mainly of arithmetic and logical operations and some if/then
conditionals. In each case, the target code is side-effect-free and
the number of live-ins and live-outs are statically identifiable. The
NPU’s scaling unit normalizes every input and output value.

Subsumed imperative code. Figure 4 depicts the proportion of
each benchmark’s dynamic execution that is replaced with NPU in-
vocations in our experiments. The potential benefit of NPU-based
execution is directly related to the amount of CPU work that is
elided. Specifically, jmeint exhibits the greatest potential for ben-
efit: nearly all of its dynamic instructions are in the target region
for the NPU transformation. This is because jmeint is in a sense
an ideal case: the entire algorithm has a fixed-size input (the ver-
tex coordinates for two 3D triangles), fixed-size output (a single
boolean indicating whether the triangles intersect), and a tolerance
for imprecision. In contrast, sobel is representative of applications
where NPUs apply more locally: the target code is “hot” but only
consists of a few arithmetic operations and relatively simple con-

4

Table 1: Benchmarks used in the evaluation. The topology of the traind neural networks and their the mean squared error

Benchmark Description Type Input Set NN Topology MSE

fft SciMark2 benchmark: fast Fourier transform Signal Processing Vector of random floating-point numbers 5→ 8→ 1 0.0041
jmeint jMonkeyEngine game framework: triangle

intersection detection
3D Gaming 100 pairs of 3D triangle coordinates 18→ 32→ 8→ 2 0.0053

jpeg JPEG encoding Compression 220×220-pixel color image 64→ 16→ 64 0.0089
kmeans K-means clustering Machine Learning 100 random two-coordinate data points 5→ 4→ 2 0.0001
raytracer 3D image renderer 3D Graphics 3D scene rendered to 450-pixel output image 8→ 8→ 3 0.0039
sobel Sobel edge detector Image Processing 220×220-pixel color image 9→ 16→ 1 0.0019

trol flow. Based on the results, both categories of application can
benefit from NPUs, although jmeint’s improvements are greater.

Neural network topologies and error levels. Table 1 shows the
neural network topology for each benchmark as discovered by the
training process. In all cases, the neural network is a feed-forward
multilayer perceptron. For example, for jmeint, the topology is 18
→ 32 → 8 → 2, meaning that the neural network takes in 18 in-
puts, produces 2 outputs, and has two hidden layers with 32 and 8
neurons. The table shows the mean squared error (MSE) for each
benchmark’s neural network. The evaluation data is distinct from
the training data. The NPU’s output error affects the overall appli-
cation quality of service differently for each benchmark. For exam-
ple, with these error rates, jmeint exhibits a 7% misclassification
rate and our two image analysis benchmarks, sobel and jpeg, pro-
duce images with less than 5% overall pixel value difference with
respect to the precise execution. These error rates are in line with
previous approximate computing evaluations [6, 9, 18, 24].

5.1 Experimental Setup
We simulate the execution of each benchmark to estimate runtime
and energy consumption on platforms with and without NPUs. op-
erations. We consider NPUs in conjunction with a 4-wide issue
OoO core similar to Alpha 21264 [13] with L2 hit latency of 10
cycles and 200 cycles of memory access latency. We use a source-
to-source transformation that instruments the benchmarks’ Java
code to emit an event trace including memory accesses, branches,
and arithmetic operators. This source-level instrumentation is un-
affected by the JIT, garbage collection, or other VM-level systems.
Using a trace-based simulator, we generate architectural event
statistics. The architectural simulator includes a cache simulation.
The simulation process outputs detailed statistics, including the cy-
cle count, cache hit and miss counts, and the number of functional
unit invocations. We simulate each benchmark twice: once with
the NPU-replaced code included and once with it excluded (i.e., to
simulate offloading the functionality to the NPU). The trace-based
CPU simulator is augmented with a cycle-accurate NPU simula-
tor that also generates the statistics required for the NPU energy
estimation.

The resulting statistics are sent to a modified version of Mc-
PAT [15] to estimate the energy consumption of each execution.
We model the energy consumption of an 8-PE NPU using the re-
sults from CACTI 6.5 [19] and McPAT [15] for memory arrays,
buses, and steering logic. We use the results from Galal et al. [11]
to estimate the energy of multiply-and-add We model the NPU and
the core at the 45 nm technology node. The NPU operates at the
same frequency and voltage as the main core, 2080 MHz and 0.9 V.

The modeled performance and energy for the NPU depends on
the neural network topology. Complex networks, like the one for
jmeint, consume more time and energy than smaller ones. Specif-
ically, NPU execution times range from 14 cycles (for kmeans) to
330 cycles (for jmeint).

5.2 Speedup and Energy Savings
Figure 5a shows the speedup when an 8-PE NPU is used to replace
the target code. The rest of the code runs on the general-purpose

1

10

fft jmeint jpeg kmeans raytrace sobel geomean

4.3

1.3
1.7

8.8

1.7

113.7

1.7
2.0

1.21.2

6.2

1.5

4.5

1.1

Sp
ee

du
p

(L
og

 S
ca

le
)

OoO + NPU OoO + Ideal NPU

(a) Speedup on OoO core

1

10

fft jmeint jpeg kmeans raytrace sobel geomean

4.3

1.2

1.7

8.6

1.8

123.9

1.6

2.4

1.2
1.5

7.7

1.7

5.9

1.4

En
er

gy
 R

ed
uc

tio
n

(L
og

 S
ca

le
)

OoO + NPU OoO + Ideal NPU

(b) Energy savings on OoO core

Figure 5: Performance and energy improvements. The “Ideal
NPU” values indicate the hypothetical gains if the NPU were to
take zero time and zero energy.

core. The baseline consists of executing the entire, untransformed
benchmark on the CPU. The plots also show the potential available
speedup: the hypothetical speedup if the NPU takes zero cycles to
perform a recall. On average, the benchmarks see a 2.0× speedup.
Figure 5b shows the energy reduction for NPU-augmented design.
Again, the baseline is the energy consumed by running the entire
benchmark on the unmodified CPU and the “ideal” energy savings
correspond to using a hypothetical zero-energy NPU. On average,
the programs see a 2.4× energy reduction. These results indicate a
significant speedup and energy reduction for an 8-PE floating-point
digital NPU. The limit results, where we consider a hypothetical
zero-energy instantaneous NPU, suggest that using an even more
efficient NPU implementation can lead to even greater savings—
up to about 4× performance and energy improvements on average.

6. Related Work
This work has three well-established categories of related work: ap-
proximate computing; synthesis and configurable computing; and
hardware neural networks.

Many categories of “soft” applications have been shown to be
tolerant to imprecision during execution. Prior work has explored

5

relaxed hardware semantics and their impact on these applications,
both as extensions to traditional architectures [6, 9, 18] and in the
form of fully approximate processing units [4, 14, 20]. In contrast
to the former, in which fine-grained portions of a mostly-precise ex-
ecution are made approximate, NPUs can apply to coarse blocks of
code or even entire algorithms. NPU invocations can subsume im-
perative control operations and other overheads of precise compu-
tation. The NPU design presented in this paper eliminates dynamic
instruction scheduling in the replaced application code, leading to
faster and more energy-efficient execution. In contrast to the latter
category, in which entire processing units carry relaxed semantics
and thus vastly different programming models, NPUs can be used
transparently from traditional programs. No special code must be
written to take advantage of the general-purpose approximate units;
instead, using a learning mechanism, NPUs can accelerate existing
applications with minimal programmer intervention. Some work
has also exposed relaxed semantics in the programming language to
give programmers control over the precision of software [2, 6, 24].
These proposals allow programmers to use approximation—such
as NPUs—effectively.

NPUs extend prior work in the areas of configurable comput-
ing, synthesis, specialization, and acceleration that focuses on com-
piling traditional, imperative code into efficient hardware struc-
tures. Significant progress has been made on synthesizing effi-
cient circuits and configuring FPGAs to accelerate general-purpose
code [5, 10, 22]. Static specialization has also shown significant ef-
ficiency gains for irregular and legacy code [26]. NPUs represent
an opportunity to go beyond the efficiency gains that are possi-
ble when strict correctness is not required. While some code is not
amenable to approximation and should be accelerated only with
correctness-preserving techniques, NPUs can provide greater per-
formance and energy improvements in many situations where re-
laxed semantics are appropriate.

Finally, our neural-network NPU design builds on research sur-
rounding the implementation and exploitation of hardware neural
network implementations, both analog [3] and digital [7]. Prior
work has also proposed abstractions for exposing learning mech-
anisms to software [12]. Training-based acceleration represents a
new way to use neural networks in general computations.

7. Conclusions
This paper showed how artificial neural networks can be used as
fine-grain accelerators for a wide range of approximable codes. We
introduced a specific design called Neural Processing Units and a
compiler workflow that uses a programmer annotation to identify
the function to accelerate. With that function, the compiler can au-
tomatically transform the code, train the NPU, and invoke the NPU
at runtime, showing consistent performance improvements and en-
ergy savings both on the order of 2×. We showed that a simple
algorithm can search the space of network topologies and produce
neural networks with comparable error rates to previous, more con-
ventional approaches to approximate computation. Traditionally,
hardware implementations of neural networks have been confined
to specific classes of learning applications. In this paper, we have
shown that the potential exists to use them to accelerate significant
chunks of general-purpose code that can tolerate small errors. This
capability aligns with both transistor and application trends. Neural
networks thus have the potential to form a new, widely used class of
accelerators, similar to the roles that FPGAs and GPUs play today.

References
[1] C. Alvarez, J. Corbal, and M. Valero. Fuzzy memoization for floating-

point multimedia applications. IEEE Trans. Comput., 54(7), 2005.
[2] W. Baek and T. M. Chilimbi. Green: A framework for supporting

energy-conscious programming using controlled approximation. In

PLDI, 2010.
[3] B. E. Boser, E. Sckinger, J. Bromley, Y. Lecun, L. D. Jackel, and

S. Member. An analog neural network processor with programmable
topology. J. Solid-State Circuits, 26:2017–2025, 1991.

[4] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,
K. V. Palem, and B. Seshasayee. Ultra-efficient (embedded) SOC
architectures based on probabilistic CMOS (PCMOS) technology. In
DATE, 2006.

[5] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. Application-
specific processing on a general-purpose core via transparent instruc-
tion set customization. In MICRO, 2004.

[6] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An architec-
tural framework for software recovery of hardware faults. In ISCA,
2010.

[7] H. Esmaeilzadeh, P. Saeedi, B. Araabi, C. Lucas, and S. Fakhraie.
Neural network stream processing core (NnSP) for embedded systems.
In ISCAS, 2006.

[8] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In ISCA,
2011.

[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. In ASPLOS, 2012.

[10] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the compu-
tation gap between programmable processors and hardwired accelera-
tors. In HPCA, 2009.

[11] S. Galal and M. Horowitz. Energy-efficient floating-point unit design.
IEEE Trans. Comput., 60(7):913–922, 2011.

[12] A. Hashmi, A. Nere, J. J. Thomas, and M. Lipasti. A case for
neuromorphic ISAs. In ASPLOS, 2011.

[13] R. E. Kessler. The Alpha 21264 Microprocessor. MICRO, 1999.
[14] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra. ERSA: Error

resilient system architecture for probabilistic applications. In DATE,
2010.

[15] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO,
2009.

[16] X. Li and D. Yeung. Exploiting soft computing for increased fault
tolerance. In ASGI, 2006.

[17] X. Li and D. Yeung. Exploiting application-level correctness for low-
cost fault tolerance. J. Instruction-Level Parallelism, 2008.

[18] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Sav-
ing refresh-power in mobile devices through critical data partitioning.
In ASPLOS, 2011.

[19] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0. In MICRO, 2007.

[20] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones. Scalable stochas-
tic processors. In DATE, 2010.

[21] S.-Y. Peng, P. Hasler, and D. Anderson. An analog programmable
multidimensional radial basis function based classifier. TCAS-I, 54
(10):2148–2158, 2007.

[22] R. Razdan and M. D. Smith. A high-performance microarchitecture
with hardware-programmable functional units. In MICRO, 1994.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, volume 1, pages
318–362. MIT Press, 1986.

[24] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general
low-power computation. In PLDI, 2011.

[25] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard.
Managing performance vs. accuracy trade-offs with loop perforation.
In FSE, 2011.

[26] G. Venkatesh, J. Sampson, N. Goulding, S. K. Venkata, S. Swanson,
and M. Taylor. QsCores: Trading dark silicon for scalable energy
efficiency with quasi-specific cores. In MICRO, 2011.

[27] J. Zhu and P. Sutton. FPGA implementations of neural networks: A
survey of a decade of progress. In FPL, 2003.

6

