
Static Single Assignment Form and the Control Dependence Graph . 481

– CD-1(B) is the set of nodes that are control dependence predecessors of the

node corresponding to block B. This is the same as RDF( B) in Figure 14.

After the algorithm discovers the live statements, all those still not marked

live are deleted. 11 Other optimizations (such as code motion) may leave

empty blocks, so there is already ample reason for a late optimization to

remove them. The empty blocks left by dead code elimination can be removed

along with any other empty blocks.

The fact that statements are considered dead until marked live is crucial

for condition (2). Statements that depend (transitively) on themselves are

never marked live unless required by some other live statement. Condition

(3) is handled by the loop over CD- l(Block(S)). A basic block whose termina-

tion controls a block with live statements is itself live.

7.2 Allocation by Coloring

At first, it might seem possible simply to map all occurrences of Vi back to V

and to delete all of the ~-functions. However, the new variables introduced by

translation to SSA form cannot always be eliminated, because optimization

may have capitalized on the storage independence of the new variables. The

useful persistence of the new variables introduced by translation to SSA form

can be illustrated by the code motion example in Figure 18. The source code

(Figure 18a) assigns to V twice and uses it twice. The SSA form (Figure 18b)

can be optimized by moving the invariant assignment out of the loop,

yielding a program with separate variables for separate purposes (Figure

18c). The dead assignment to V3 will be eliminated. These optimization

leave a region in the program where VI and Vz are simultaneously live.

Thus, both variables are required: The original variable V cannot substitute

for both renamed variables.

Any graph coloring algorithm [12, 13, 17, 18, 211 can be used to reduce the

number of variables needed and thereby can remove most of the associated

assignment statements. The choice of coloring technique should be guided by

the eventual use of the output. If the goal is to produce readable source code,

then it is desirable to consider each original variable V separately, coloring

just the SSA variables derived from V. If the goal is machine code, then all of

the SSA variables should be considered at once. In both cases, the process of

coloring changes most of the assignments that were inserted to model the

@functions into identity assignments, that is, assignments of the form V - V.

These identity assignments can all be deleted.

Storage savings are especially noticeable for arrays. If optimization does

not perturb the order of the first two statements in Figure 7, then ~arrays

A ~ and A ~ can be assigned the same color and, hence, can share the

same storage. The array A ~ is then assigned an Update from an iden-

tically colored array. Such operations can be implemented inexpensively by

llA conditional branch can be deleted by transforming it to an unconditional branch to any one

of its prior targets.
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while (. ..) do while (. ..) do

W3 - ~(w~, W-J

V3 - lj(v~, v~)

read V read V1
Wtv+w WI +vi+w3

V+6 V2t6
W+v+w W2 +V2+W1

end end
(a) (b)

V2G6

while (. ..) do

W3 + ~(w~, w~)

V3 + $+(VO, V2)

read VI

WI +V1+W3

W2 4- V2+W1
end

(c)

Fig 18. Program that really uses two instances for a variable after code motion. (a) Source
program; (b)unoptimized SSA form; (c) result of code motion,

assigning to just one component if the array s share storage. Inparticular, the

actual operation performed by HiddenUpdate is always of this form.

8. ANALYSIS AND MEASUREMENTS

The number of nodes that contain d-functions for a variable V is a function of

the program control flow structure and the assignments to V. Program

structure alone determines dominance frontiers and the number of control

dependence. It is possible that dominance frontiers may be larger than

necessary for computing @function locations for some programs, since the

actual assignments are not taken into account. In this section we prove that

the size of the dominance frontiers is linear in the size of the program when

control flow branching is restricted to if-then-else constructs and while-do

loops. (We assume that expressions and predicates perform no internal

branching.) Such programs can be described by the grammar given in Fig-

ure 19. We also give experimental results that suggest that the behavior is

linear for actual programs.

THEOREM 4. For programs comprised of straight-line code, if-then-else,

and while-do constructs, the dominance frontier of any CFG node contains at

most two nodes.

PROOF. Consider a top-down parse of a program using the grammar shown

in Figure 19. Initially, we have a single (program) node in the parse tree

and a control flow graph CFG with two nodes and one edge: Entry - Exit.

The initial dominance frontiers are DF(Entry) = @ = DF(Exit). For each

production, we consider the associated changes to CFG and to the dominance

frontiers of nodes. When a production expands a nonterminal parse tree node

S, a new subgraph is inserted into CFG in place of S. In this new subgraph,

each node corresponds to a symbol on the right-hand side of the production.
We will show that applying any of the productions preserves the following

invariants:

–Each CFG node S corresponding to an unexpanded (statement) symbol

has at most one node in its dominance frontier.
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<program> :: = <S. tatenent> (1)
<statement> ::= <statement><staternent> (2)
<statement> ::= if <predicate> (3)

then <statement>

else <statement>

<statement> ::= while <predicate> (4)
do <statement>

<statement.> ::= <variable> - <expression> (5)

Fig. 19. Grammar for control structures

—Each CFG node T corresponding to a terminal symbol has at most two

nodes in its dominance frontier.

We consider the productions inturn.

(l) This production adds aCFG node Sand edges Entry +S+Exit, yield-

ing DF(S) = {Exit}.

(2) When this production is applied, aCF’G node Sisreplaced by twon odes

SI and Sz. Edges previously entering and leaving S now enter SI and

leave Sz. A single edge is inserted from SI to Sz. Although the control

flow graph has changed, consider how this production affects thedornina -

tortree: Nodes Sland Szdominate all nodes that were dominateclby S;

additionally, Sldominates Sz. Thus, wehave DF(Sl) = DF(S) = DIF(SJ.

(3) When this production is applied, a CFG node S is replaced by nodes Ti~,

s Sel.e,then? and Te.~i~. Edges previously entering and leaving S now

enter T,~ and leave T,~~z~. Edges are inserted from Ti~ to both S~~,.mand

s~l~~; edges are also inserted from St~~~ and S~l~~ to Te~~i~. In the
dominator tree, Ti ~ and T,~~i ~ both dominate all nodes that were domi-

nated by S. Additionally, Ti ~ dominates S~~~~ and S.l,.. IBy the argument

made for production (2), we have DF( T,~) = DF( S) = DF(T,~~i ~]). NOW

consider nodes Sthen and Sel~e. From the definition of a dominance

fr(mtier, we obtain DF(S,~e.) = DF(S.l.,) = { T.n~,fl}.

(4) When this production is applied, a CFG node S is replaced by nodes

T whzle and SdO. All edges previously associated with node S are now

associated with node TUkil.. Edges are inserted from TW~,l, to Sd. and

from S& to TU~,l,. Node TWh,l, dominates all nodes that were dominated
by node S. Additionally, TU~,l, dominates SdO. Thus, we have DF( TWhil.)

= DF(S) U { TWhi~=)and DF(SdO) = { T~h,~,}.

(5) After application of this production, the new control flow graph is isomor-

phic to the old graph. ❑

COROLLARY 2. For programs comprised of straight-line code, if-then-else,

and while-do constructs, every node is control dependent on at most two

nodes.

PROOF. Consider a program P composed of the allowed constructs and its

associated control flow graph CFG. The reverse control flow graph R(CFG is
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Table 1. Summary Statistics of Our Experiment

Statements

in all
Package name procedures

EISPACK 7,034

FL052 2,054
SPICE 14,093

Totals 23,181

Statements

per procedure

Min Median Max Description

22 89 327 Dense matrix eigenvectors and values

9 54 351 Flow past an airfoil
8 43 753 Circuit simulation

8 55 753 221 FORTRAN procedures

itself a structured control flow graph for some program P’. For all Y in

RCFG, DF( Y) contains at most two nodes by Theorem 4. By Corollary 1, Y

is then control dependent on at most two nodes. ❑

Unfortunately, these linearity results do not hold for all program struc-

tures. In particular, consider the nest of repeat-until loops illustrated in

Figure 5. For each loop, the dominance frontier of the entrance to that loop

includes each of the entrances to surrounding loops. For n nested loops, this

leads to a dominance frontier mapping whose total size is 0( nz), yet each

variable needs at most 0(n) d-functions. Most of the dominance frontier

mapping is not actually used in placing @functions, so it seems that the

computation of dominance frontiers might take excessive time with respect to

the resulting number of actual @functions. We therefore wish to measure the

number of dominance frontier nodes as a function of program size over a

diverse set of programs.

We implemented our algorithms for constructing dominance frontiers and

placing ~-functions in the PTRAN system, which already offered the required

local data flow and control flow analysis [2]. We ran these algorithms on 61

library procedures from EISPACK [46] and 160 procedures from two “Perfect”

[391 benchmarks. Some summary statistics of these procedures are shown in
Table I. These FORTRAN programs were chosen because they contain irre-

ducible intervals and other unstructured constructs. As the plot in Figure 20

shows, the size of the dominance frontier mapping appears to vary linearly

with program size. The ratio of these sizes ranged from 0.6 (the Entry node

has an empty dominance frontier) to 2.1.

For the programs we tested, the plot in Figure 21 shows that the number of

~-functions is also linear in the size of the original program. The ratio of

these sizes ranged from 0.5 to 5.2. The largest ratio occurred for a procedure
of only 12 statements, and 95 percent of the procedures had a ratio under 2.3.

All but one of the remaining procedures contained fewer than 60 statements.

Finally, the plot in Figure 22 shows that the size of the control dependence

graph is linear in the size of the original program. The ratio of these sizes

ranged from O.6 to 2.4, which is very close to the range of ratios for
dominance frontiers.

The ratio avrgDF (defined by (7) in Section 5.1) measures the cost of

placing ~-functions relative to the number of assignments in the resulting
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Fig. 20. Size of dominance frontier mapping versus number of program statements.
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SSA form program. This ratio varied from 1 to 2, with median 1.3. There was

no correlation with program size.

We also measured the expansion A,., / A.... in the number of assignments
when translating to SSA form. This ratio varied from 1.3 to 3.8. Fina”lly, we

measured the expansion MtOt / MO,,~ in the number of mentions (assignments
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Fig. 22. Size of control dependence graph versus number of program statements.

or uses) of variables when translating to SSA form. This ratio varied from 1.6

to 6.2. For both of these ratios, there was no correlation with program size.

9. DISCUSSION

9.1 Summary of Algorithms and Time Bounds

The conversion to SSA form is done in three steps:

(1)

(2)

(3)

The dominance fi-ontier mapping is constructed from the control flow

graph CFG (Section 4.2). Let CFG have N nodes and E edges. Let DF

be the mapping from nodes to their dominance frontiers. The time to

compute the dominator tree and then the dominance frontiers in CFG is

O(E + Xx I DF(X)I).

Using the dominance frontiers, the locations of the @functions for each

variable in the original program are determined (Section 5.1). Let A ~Otbe

the total number of assignments to variables in the resulting program,

where each ordinary assignment statement LHS * RHS contributes the

len~h of the tuple LffS to A ~ot, and each ~-function contributes I to
A ,.,. Placing @functions contributes 0( A,O, x aurgDF) to the overall

time, where aurgDF is the weighted average (7) of the sizes I DF( X) 1.

The variables are renamed (Section 5.2). Let M,O, be the total number of

mentions of variables in the resulting program. Renaming contributes

0( M, O,) to the overall time.

To state the time bounds in terms of fewer parameters, let the overall size

R of the original program be the maximum of the relevant numbers: N
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nodes, E edges, AOT,~ original assignments to variables, and MO,,~ original

mentions of variables. In the worst case, avrgDF = ~ ( IV) = 0(R), and k

ordinary assignments can require 0( I&) insertions of qLfunctions. Thus,

A tOt = !J(R2) at worst. In the worst case, a c$function has !J( 1?) operands.

Thus, M,Ot = 0( R3) at worst. The one-parameter worst-case time bounds are

thus 0(122) for finding dominance frontiers and 0( R3) for translation to

SSA form.

However, the data in Section 8 suggest that the entire translation to SSA

form will be linear in practice. The dominance frontier of each node in CFG

is small, as is the number of ~-functions added for each variable. In effect,

avrgDF is constant, A ~Ot= 0( Ao,,~), and M,O, = O(MO,,~). The entire trans-
lation process is effectively O(R).

Control dependence are read off from the dominance frontiers in the

reverse graph RCFG (Section 6) in time 0( E + size( RDF)). Since the size of

RDF is the size of the output of the control dependence calculation, this

algorithm is linear in the size of the output. The only quadratic behavior is

caused by the output being fl( R2) in the worst case. The data in Section 8

suggest that the control dependence calculation is effectively 0(R).

9.2 Related Work

Minimal SSA form is a refinement of Shapiro and Saint’s [45] notion of a

pseudoassignment. The pseudoassignment nodes for V are exactly the nodes

that need o-functions for V. A closer precursor [221 of SSA form associated

new names for V with pseudoassignment nodes and inserted assignments

from one new name to another. Without explicit @functions, however, it was

difficult to manage the new names or reason about the flow of values.

Suppose the control flow graph CFG has N nodes and. E edges for a

program with Q variables. One algorithm [411 requires 0( Ea( E, N)) bit

vector operations (where each vector is of length Q) to find all of the

pseudoassignments. A simpler algorithm [43] for reducible programs com-

putes SSA form in time 0( E x Q). With lengths of bit vectors taken into

account, both of these algorithms are essentially 0( R2 ) on programs of size

R, and the simpler algorithm sometimes inserts extraneous o-functions. The

method presented here is 0( R3) at worst, but Section 8 gives evidence that it

is 0(R) in practice. The earlier 0( R2 ) algorithms have no provision for

running faster in typical cases; they appear to be intrinsically quadratic.

For CFG with N nodes and E edges, previous general control dependence

algorithms [24] can take quadratic time in (N + E). This analysis is based on

the worst-case 0(N) depth of the (post) dominator tree [24, p. 326]. Section 6

shows that control dependence can be determined by computing dominance

frontiers in the reverse graph RCFG. In general, our approach can also take

quadratic time, but the only quadratic behavior is caused by the output being

fl( N2) in the worst case. In particular, suppose a program is comprised only

of straight-line code, if-then-else, and while-do constructs. By Corollary 2,

our algorithm computes control dependence in linear time. We obtain a
better time bound for such programs because our algorithm is based on

dominance frontiers, whose sizes are not necessarily related to the depth of
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the dominator tree. For languages that offer only these constructs, control

dependence can also be computed from the parse tree [28] in linear time, but

our algorithm is more robust. It handles all cases in quadratic time and

typical cases in linear time.

9.3 Conclusions

Previous work has shown that SSA form and control dependence can support

powerful code optimization algorithms that are highly efficient in terms of

time and space bounds based on the size of the program after translation to

the forms. We have shown that this translation can be performed efficiently,

that it leads to only a moderate increase in program size, and that applying

the early steps in the SSA translation to the reverse graph is an efficient way

to compute control dependence. This is strong evidence that SSA form and

control dependence form a practical basis for optimization.
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