Feature Matching and Robust Fitting

Computer Vision

James Hays

Read Szeliski 4.1

Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial
The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching
This section: correspondence and alignment

• Correspondence: matching points, patches, edges, or regions across images
Review: Local Descriptors

• Most features can be thought of as templates, histograms (counts), or combinations
• The ideal descriptor should be
 – Robust and Distinctive
 – Compact and Efficient
• Most available descriptors focus on edge/gradient information
 – Capture texture information
 – Color rarely used

K. Grauman, B. Leibe
Can we refine this further?
Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points
Fitting and Alignment

• Design challenges
 – Design a suitable **goodness of fit** measure
 • Similarity should reflect application goals
 • Encode robustness to outliers and noise
 – Design an **optimization** method
 • Avoid local optima
 • Find best parameters quickly
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares
 – Other parameter search methods

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares
 – Other parameter search methods

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Simple example: Fitting a line
Least squares line fitting

• Data: \((x_1, y_1), \ldots, (x_n, y_n)\)
• Line equation: \(y_i = mx_i + b\)
• Find \((m, b)\) to minimize

\[
E = \sum_{i=1}^{n} (y_i - mx_i - b)^2
\]

\[
E = \sum_{i=1}^{n} \left(\begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right)^2 = \left\| \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\|^2 = \|Ap - y\|^2
\]

\[
\]

\[
\frac{dE}{dp} = 2A^T Ap - 2A^T y = 0
\]

Matlab: \(p = A \backslash y;\)

Python: \(p = \text{numpy.linalg.lstsq}(A, y)\)

\[
A^T Ap = A^T y \implies p = \left(A^T A\right)^{-1} A^T y
\]

Modified from S. Lazebnik
Least squares (global) optimization

Good
• Clearly specified objective
• Optimization is easy

Bad
• May not be what you want to optimize
• Sensitive to outliers
 – Bad matches, extra points
• Doesn’t allow you to get multiple good fits
 – Detecting multiple objects, lines, etc.
Least squares: Robustness to noise

• Least squares fit to the red points:
Least squares: Robustness to noise

- Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares
 – Other parameter search methods

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Robust least squares (to deal with outliers)

General approach:
minimize
\[
\sum \rho(u_i(x_i, \theta); \sigma)
\]

\[u^2 = \sum_{i=1}^{n} (y_i - mx_i - b)^2 \]

\(u_i(x_i, \theta) \) – residual of ith point w.r.t. model parameters \(\theta \)
\(\rho \) – robust function with scale parameter \(\sigma \)

The robust function \(\rho \)
- Favors a configuration with small residuals
- Constant penalty for large residuals

\[
\rho(u; \sigma) = \frac{u^2}{\sigma^2 + u^2}
\]

Slide from S. Savarese
Choosing the scale: Just right

The effect of the outlier is minimized
Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor
Choosing the scale: Too large

Behaves much the same as least squares
Robust estimation: Details

• Robust fitting is a nonlinear optimization problem that must be solved iteratively

• Least squares solution can be used for initialization

• Scale of robust function should be chosen adaptively based on median residual
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares
 – Other parameter search methods

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Other ways to search for parameters (for when no closed form solution exists)

- **Line search**
 1. For each parameter, step through values and choose value that gives best fit
 2. Repeat (1) until no parameter changes

- **Grid search**
 1. Propose several sets of parameters, evenly sampled in the joint set
 2. Choose best (or top few) and sample joint parameters around the current best; repeat

- **Gradient descent**
 1. Provide initial position (e.g., random)
 2. Locally search for better parameters by following gradient
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares
 – Other parameter search methods

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Multi-stable Perception

Necker Cube
Spinning dancer illusion, Nobuyuki Kayahara
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares
 – Iterative closest point (ICP)

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid
Hough transform

Given a set of points, find the curve or line that explains the data points best

\[y = m \cdot x + b \]

Slide from S. Savarese
Hough transform

Slide from S. Savarese
Hough transform

Issue: parameter space $[m,b]$ is unbounded...

Use a polar representation for the parameter space

$$x \cos \theta + y \sin \theta = \rho$$

Hough space
Hough transform - experiments

features

votes

Slide from S. Savarese
Hough transform - experiments

Noisy data

Need to adjust grid size or smooth

Slide from S. Savarese
Hough transform - experiments

Issue: spurious peaks due to uniform noise
1. Image → Canny
2. Canny \rightarrow Hough votes
3. Hough votes \rightarrow Edges

Find peaks and post-process
Hough transform example
Finding lines using Hough transform

• Using m,b parameterization

• Using r, theta parameterization
 – Using oriented gradients

• Practical considerations
 – Bin size
 – Smoothing
 – Finding multiple lines
 – Finding line segments
Hough Transform

• How would we find circles?
 – Of fixed radius
 – Of unknown radius
 – Of unknown radius but with known edge orientation
Hough transform for circles

- Conceptually equivalent procedure: for each \((x,y,r)\), draw the corresponding circle in the image and compute its “support”

Is this more or less efficient than voting with features?
Hough transform conclusions

Good
• Robust to outliers: each point votes separately
• Fairly efficient (much faster than trying all sets of parameters)
• Provides multiple good fits

Bad
• Some sensitivity to noise
• Bin size trades off between noise tolerance, precision, and speed/memory
 – Can be hard to find sweet spot
• Not suitable for more than a few parameters
 – Grid size grows exponentially

Common applications
• Line fitting (also circles, ellipses, etc.)
• Object instance recognition (parameters are affine transform)
• Object category recognition (parameters are position/scale)