Fitting and Alignment

Computer Vision

James Hays

Acknowledgment: Many slides from Derek Hoiem, Lana Lazebnik, and Grauman&Leibe 2008 AAAI Tutorial
Project 2 – due Friday

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching
Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Hough transform
 - RANSAC
- Iterative Closest Points (ICP)
Review: Hough Transform

1. Create a grid of parameter values

2. Each point (or correspondence) votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid
Review: Hough transform

Given a set of points, find the curve or line that explains the data points best

\[y = mx + b \]
Review: Hough transform
Hough Transform

• How would we find circles?
 – Of fixed radius
 – Of unknown radius
 – Of unknown radius but with known edge orientation
Hough transform for circles

• Conceptually equivalent procedure: for each \((x,y,r)\), draw the corresponding circle in the image and compute its “support”

Is this more or less efficient than voting with features?
Hough transform for circles

- Circle: center (a, b) and radius r
 \[(x_i - a)^2 + (y_i - b)^2 = r^2\]

- For a fixed radius r

 Equation of circle?

 Equation of set of circles that all pass through a point?

Adapted by Devi Parikh from: Kristen Grauman
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)
 \[
 (x_i - a)^2 + (y_i - b)^2 = r^2
 \]
- For a fixed radius \(r\)
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)
 \[
 (x_i - a)^2 + (y_i - b)^2 = r^2
 \]
- For an unknown radius \(r\)
Hough transform for circles

- Circle: center \((a,b)\) and radius \(r\)

\[
(x_i - a)^2 + (y_i - b)^2 = r^2
\]

- For an unknown radius \(r\)
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)
 \[(x_i - a)^2 + (y_i - b)^2 = r^2\]
- For an unknown radius \(r\), **known** gradient direction
Hough transform for circles

For every edge pixel \((x,y)\):

For each possible radius value \(r\):

For each possible gradient direction \(\theta\):
\[
\text{\texttt{// or use estimated gradient at \((x,y)\)}
\]
\[
a = x - r \cos(\theta) \quad \text{\// column}
\]
\[
b = y + r \sin(\theta) \quad \text{\// row}
\]
\[
H[a,b,r] \ += 1
\]

end

end

• Check out online demo : http://www.markschulze.net/java/hough/
Example: detecting circles with Hough

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).
Example: detecting circles with Hough

Combined detections

Edges

Votes: Quarter

Coin finding sample images from: Vivek Kwatra

Slide credit: Kristen Grauman
Example: iris detection

- Hemerson Pistori and Eduardo Rocha Costa
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 — Least squares fit
 — Robust least squares
 — Other parameter search methods
• Hypothesize and test
 — Hough transform
 — RANSAC
• Iterative Closest Points (ICP)
RANSAC

(RANdom SAmple Consensus):

Fischler & Bolles in ’81.

Algorithm:

1. **Sample** (randomly) the number of points required to fit the model
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

\[N_I = 6 \]
Algorithm:
1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
How to choose parameters?

• Number of samples N
 – Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

• Number of sampled points s
 – Minimum number needed to fit the model

• Distance threshold δ
 – Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 – Zero-mean Gaussian noise with std. dev. σ: $t^2=3.84\sigma^2$

$$N = \log(1-p)/\log(1-(1-e)^s)$$

<table>
<thead>
<tr>
<th>s</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>

For $p = 0.99$

modified from M. Pollefeys
RANSAC conclusions

Good
• Robust to outliers
• Applicable for larger number of model parameters than Hough transform
• Optimization parameters are easier to choose than Hough transform

Bad
• Computational time grows quickly with fraction of outliers and number of parameters
• Not good for getting multiple fits

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)
How do we fit the best alignment?
Alignment

• Alignment: find parameters of model that maps one set of points to another

• Typically want to solve for a global transformation that accounts for *most* true correspondences

• Difficulties
 – Noise (typically 1-3 pixels)
 – Outliers (often 50%)
 – Many-to-one matches or multiple objects
Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that T is global?
- Is the same for any point p
- Can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

$$p' = Tp$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
Common transformations

- translation
- rotation
- aspect
- affine
- perspective

Slide credit (next few slides): A. Efros and/or S. Seitz
Scaling

• *Scaling* a coordinate means multiplying each of its components by a scalar
• *Uniform scaling* means this scalar is the same for all components:
Scaling

- **Non-uniform scaling**: different scalars per component:

 \[X \times 2, \quad Y \times 0.5 \]
Scaling

• Scaling operation:

\[x' = ax \]
\[y' = by \]

• Or, in matrix form:

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix}
= \begin{bmatrix}
 a & 0 \\
 0 & b
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\[
\text{scaling matrix } S
\]
2-D Rotation

\[
x' = x \cos(\theta) - y \sin(\theta)
\]
\[
y' = x \sin(\theta) + y \cos(\theta)
\]
2-D Rotation

This is easy to capture in matrix form:

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

Even though \(\sin(\theta)\) and \(\cos(\theta)\) are nonlinear functions of \(\theta\),

- \(x'\) is a linear combination of \(x\) and \(y\)
- \(y'\) is a linear combination of \(x\) and \(y\)

What is the inverse transformation?

- Rotation by \(-\theta\)
- For rotation matrices \(R^{-1} = R^T\)
Basic 2D transformations

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 \\
 0 & s_y
\end{bmatrix}\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
Scale

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 1 & \alpha_x \\
 \alpha_y & 1
\end{bmatrix}\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
Shear

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 \cos\Theta & -\sin\Theta \\
 \sin\Theta & \cos\Theta
\end{bmatrix}\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
Rotate

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y
\end{bmatrix}\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]
Translate

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f
\end{bmatrix}\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]
Affine

Affine is any combination of translation, scale, rotation, shear
2D Affine Transformations

Affine transformations are combinations of …
- Linear transformations, and
- Translations

Parallel lines remain parallel.
Projective Transformations

\[
\begin{bmatrix}
 x' \\
y' \\
w'
\end{bmatrix} = \begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix} \begin{bmatrix}
x \\
y \\
w
\end{bmatrix}
\]

Projective transformations:
- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel
2D image transformations (reference table)

<table>
<thead>
<tr>
<th>Name</th>
<th>Matrix</th>
<th># D.O.F.</th>
<th>Preserves:</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>$\begin{bmatrix} I & t \end{bmatrix}_{2\times3}$</td>
<td>2</td>
<td>orientation + ···</td>
<td></td>
</tr>
<tr>
<td>rigid (Euclidean)</td>
<td>$\begin{bmatrix} R & t \end{bmatrix}_{2\times3}$</td>
<td>3</td>
<td>lengths + ···</td>
<td></td>
</tr>
<tr>
<td>similarity</td>
<td>$\begin{bmatrix} sR & t \end{bmatrix}_{2\times3}$</td>
<td>4</td>
<td>angles + ···</td>
<td></td>
</tr>
<tr>
<td>affine</td>
<td>$\begin{bmatrix} A \end{bmatrix}_{2\times3}$</td>
<td>6</td>
<td>parallelism + ···</td>
<td></td>
</tr>
<tr>
<td>projective</td>
<td>$\begin{bmatrix} \tilde{H} \end{bmatrix}_{3\times3}$</td>
<td>8</td>
<td>straight lines</td>
<td></td>
</tr>
</tbody>
</table>
Example: solving for translation

Given matched points in \{A\} and \{B\}, estimate the translation of the object

\[
\begin{bmatrix}
 x_i^B \\
 y_i^B
\end{bmatrix} = \begin{bmatrix}
 x_i^A \\
 y_i^A
\end{bmatrix} + \begin{bmatrix}
 t_x \\
 t_y
\end{bmatrix}
\]
Least squares solution

1. Write down objective function
2. Derived solution
 a) Compute derivative
 b) Compute solution
3. Computational solution
 a) Write in form $Ax=b$
 b) Solve using pseudo-inverse or eigenvalue decomposition
Example: solving for translation

RANSAC solution
1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

Problem: outliers

\[
\begin{bmatrix}
 x_i^B \\
 y_i^B \\
 1
\end{bmatrix} = \begin{bmatrix}
 x_i^A \\
 y_i^A \\
 1
\end{bmatrix} + \begin{bmatrix}
 t_x \\
 t_y
\end{bmatrix}
\]
Example: solving for translation

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

1. Initialize a grid of parameter values
2. Each matched pair casts a vote for consistent values
3. Find the parameters with the most votes
4. Solve using least squares with inliers
Example: solving for translation

Problem: no initial guesses for correspondence

\[
\begin{bmatrix}
 x_i^B \\
 y_i^B
\end{bmatrix} = \begin{bmatrix}
 x_i^A \\
 y_i^A
\end{bmatrix} + \begin{bmatrix}
 t_x \\
 t_y
\end{bmatrix}
\]
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 — Least squares fit
 — Robust least squares
 — Other parameter search methods

• Hypothesize and test
 — Hough transform
 — RANSAC

• Iterative Closest Points (ICP)
What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: match brain scans or contours

Robotics: match point clouds
Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

1. **Initialize** transformation (e.g., compute difference in means and scale)
2. **Assign** each point in {Set 1} to its nearest neighbor in {Set 2}
3. **Estimate** transformation parameters
 - e.g., least squares or robust least squares
4. **Transform** the points in {Set 1} using estimated parameters
5. **Repeat** steps 2-4 until change is very small
Example: aligning boundaries

1. Extract edge pixels $p_1 \ldots p_n$ and $q_1 \ldots q_m$
2. Compute initial transformation (e.g., compute translation and scaling by center of mass, variance within each image)
3. Get nearest neighbors: for each point p_i find corresponding match(i) = argmin j dist(p_i, q_j)
4. Compute transformation T based on matches
5. Warp points p according to T
6. Repeat 3-5 until convergence
Example: solving for translation

Problem: no initial guesses for correspondence

ICP solution
1. Find nearest neighbors for each point
2. Compute transform using matches
3. Move points using transform
4. Repeat steps 1-3 until convergence

\[
\begin{bmatrix}
 x_i^B \\
 y_i^B
\end{bmatrix} = \begin{bmatrix}
 x_i^A \\
 y_i^A
\end{bmatrix} + \begin{bmatrix}
 t_x \\
 t_y
\end{bmatrix}
\]
Sparse ICP

Sofien Bouaziz Andrea Tagliasacchi Mark Pauly
Algorithm Summaries

- **Least Squares Fit**
 - closed form solution
 - robust to noise
 - not robust to outliers
- **Robust Least Squares**
 - improves robustness to outliers
 - requires iterative optimization
- **Hough transform**
 - robust to noise and outliers
 - can fit multiple models
 - only works for a few parameters (1-4 typically)
- **RANSAC**
 - robust to noise and outliers
 - works with a moderate number of parameters (e.g., 1-8)
- **Iterative Closest Point (ICP)**
 - For local alignment only: does not require initial correspondences