Feature Matching and Robust Fitting

Computer Vision

James Hays

Read Szeliski 4.1
The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching
This section: correspondence and alignment

- Correspondence: matching points, patches, edges, or regions across images
Overview of Keypoint Matching

1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Extract and normalize the region content
4. Compute a local descriptor from the normalized region
5. Match local descriptors

\[d(f_A, f_B) < T \]
Harris Corners – Why so complicated?

• Can’t we just check for regions with lots of gradients in the x and y directions?
 – No! A diagonal line would satisfy that criteria.
Harris Detector [Harris88]

- Second moment matrix

\[
\mu(\sigma_I, \sigma_D) = g(\sigma_I) \cdot \begin{bmatrix}
I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\
I_x I_y(\sigma_D) & I_y^2(\sigma_D)
\end{bmatrix}
\]

1. Image derivatives (optionally, blur first)

\[
\text{det } M = \lambda_1 \lambda_2 \\
\text{trace } M = \lambda_1 + \lambda_2
\]

2. Square of derivatives

3. Gaussian filter \(g(\sigma_I) \)

4. Cornerness function – both eigenvalues are strong

\[
\text{har} = \text{det}[\mu(\sigma_I, \sigma_D)] - \alpha [\text{trace}(\mu(\sigma_I, \sigma_D))^2] = \\
g(I_x^2) g(I_y^2) - [g(I_x I_y)]^2 - \alpha [g(I_x^2) + g(I_y^2)]^2
\]

5. Non-maxima suppression
Harris Corners – Why so complicated?

• What does the structure matrix look here?

\[
\begin{bmatrix}
C & -C \\
-C & C
\end{bmatrix}
\]
Harris Corners – Why so complicated?

• What does the structure matrix look here?

\[
\begin{bmatrix}
C & 0 \\
0 & 0 \\
\end{bmatrix}
\]
Harris Corners – Why so complicated?

• What does the structure matrix look here?

\[
\begin{bmatrix}
 C & 0 \\
 0 & C
\end{bmatrix}
\]
Affine intensity change

- Only derivatives are used \Rightarrow invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow aI$

Partially invariant to affine intensity change
Image translation

- Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation
Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation
Scaling

Corner

All points will be classified as edges

Corner location is not covariant to scaling!
Review: Local Descriptors

- Most features can be thought of as templates, histograms (counts), or combinations.
- The ideal descriptor should be:
 - Robust and Distinctive
 - Compact and Efficient
- Most available descriptors focus on edge/gradient information:
 - Capture texture information
 - Color rarely used

K. Grauman, B. Leibe
Feature Matching

• Simple criteria: One feature matches to another if those features are nearest neighbors and their distance is below some threshold.

• Problems:
 – Threshold is difficult to set
 – Non-distinctive features could have lots of close matches, only one of which is correct
How do we decide which features match?
Nearest Neighbor Distance Ratio

\[
\frac{NN_1}{NN_2}
\] where \(NN_1 \) is the distance to the first nearest neighbor and \(NN_2 \) is the distance to the second nearest neighbor.

• Sorting by this ratio puts matches in order of confidence.
Can we refine this further?
Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points
Fitting and Alignment

• Design challenges
 – Design a suitable **goodness of fit** measure
 • Similarity should reflect application goals
 • Encode robustness to outliers and noise
 – Design an **optimization** method
 • Avoid local optima
 • Find best parameters quickly
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares
 – Iterative closest point (ICP)

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Simple example: Fitting a line
Least squares line fitting

- Data: \((x_1, y_1), \ldots, (x_n, y_n)\)
- Line equation: \(y_i = mx_i + b\)
- Find \((m, b)\) to minimize

\[
E = \sum_{i=1}^{n} (y_i - mx_i - b)^2
\]

\[
E = \sum_{i=1}^{n} \left(\begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right)^2 = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}
\]

\[
\]

\[
\frac{dE}{dp} = 2A^T Ap - 2A^T y = 0
\]

Matlab: \(\mathbf{p} = A \backslash y;\)

\[
A^T Ap = A^T y \Rightarrow \mathbf{p} = \left(A^T A\right)^{-1} A^T y
\]

Modified from S. Lazebnik
Least squares (global) optimization

Good
• Clearly specified objective
• Optimization is easy

Bad
• May not be what you want to optimize
• Sensitive to outliers
 – Bad matches, extra points
• Doesn’t allow you to get multiple good fits
 – Detecting multiple objects, lines, etc.
Least squares: Robustness to noise

• Least squares fit to the red points:
Least squares: Robustness to noise

- Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares
 – Iterative closest point (ICP)

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Robust least squares (to deal with outliers)

General approach:
minimize
\[\sum_i \rho(u_i(x_i, \theta); \sigma) \]

\[u^2 = \sum_{i=1}^n (y_i - mx_i - b)^2 \]

\(u_i(x_i, \theta) \) – residual of \(i \)th point w.r.t. model parameters \(\theta \)
\(\rho \) – robust function with scale parameter \(\sigma \)

The robust function \(\rho \)
- Favors a configuration with small residuals
- Constant penalty for large residuals
Choosing the scale: Just right

The effect of the outlier is minimized
Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor.
Choosing the scale: Too large

Behaves much the same as least squares
Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Scale of robust function should be chosen adaptively based on median residual
Other ways to search for parameters (for when no closed form solution exists)

- **Line search**
 1. For each parameter, step through values and choose value that gives best fit
 2. Repeat (1) until no parameter changes

- **Grid search**
 1. Propose several sets of parameters, evenly sampled in the joint set
 2. Choose best (or top few) and sample joint parameters around the current best; repeat

- **Gradient descent**
 1. Provide initial position (e.g., random)
 2. Locally search for better parameters by following gradient
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares
 – Iterative closest point (ICP)

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Hypothesize and test

1. Propose parameters
 – Try all possible
 – Each point votes for all consistent parameters
 – Repeatedly sample enough points to solve for parameters

2. Score the given parameters
 – Number of consistent points, possibly weighted by distance

3. Choose from among the set of parameters
 – Global or local maximum of scores

4. Possibly refine parameters using inliers
Fitting and Alignment: Methods

• Global optimization / Search for parameters
 – Least squares fit
 – Robust least squares
 – Iterative closest point (ICP)

• Hypothesize and test
 – Generalized Hough transform
 – RANSAC
Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid
Hough transform

Given a set of points, find the curve or line that explains the data points best

\[y = m x + b \]
Hough transform

Slide from S. Savarese
Hough transform

Issue: parameter space \([m,b]\) is unbounded...

Use a polar representation for the parameter space

\[
x \cos \theta + y \sin \theta = \rho
\]
Hough transform - experiments

features

evotes
Hough transform - experiments

Noisy data

Need to adjust grid size or smooth
Hough transform - experiments

Issue: spurious peaks due to uniform noise
1. Image \rightarrow Canny
2. Canny \rightarrow Hough votes
3. Hough votes \rightarrow Edges

Find peaks and post-process
Hough transform example

http://ostatic.com/files/images/ss_hough.jpg
Incorporating image gradients

• Recall: when we detect an edge point, we also know its gradient direction

• But this means that the line is uniquely determined!

• Modified Hough transform:

• For each edge point \((x,y)\)
 \[\theta = \text{gradient orientation at } (x,y) \]
 \[\rho = x \cos \theta + y \sin \theta \]
 \[H(\theta, \rho) = H(\theta, \rho) + 1 \]
end
Finding lines using Hough transform

• Using m,b parameterization
• Using r, theta parameterization
 – Using oriented gradients
• Practical considerations
 – Bin size
 – Smoothing
 – Finding multiple lines
 – Finding line segments
Hough Transform

• How would we find circles?
 – Of fixed radius
 – Of unknown radius
 – Of unknown radius but with known edge orientation
Next lecture

• RANSAC

• Connecting model fitting with feature matching