Classical and Modern Recognition Techniques
Today’s outline

• We’ve covered Deep Convolutional Networks. But what did recognition techniques look like before AlexNet?
 – Bag of words models
 – Sliding window models
• What do more recent deep learning architectures look like?
Recognition: Overview and History

Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce
How many visual object categories are there?

~10,000 to 30,000

Biederman 1987
~10,000 to 30,000
Specific recognition tasks
Scene categorization or classification

- outdoor/indoor
- city/forest/factory/etc.
Object detection

• find pedestrians

Svetlana Lazebnik
Image parsing / semantic segmentation

- sky
- mountain
- building
- tree
- banner
- street lamp
- market
- people

Svetlana Lazebnik
Scene understanding?
Recognition is all about modeling variability

Variability:
- Camera position
- Illumination
- Shape parameters

Within-class variations?

Svetlana Lazebnik
Within-class variations
History of ideas in recognition

• 1960s – early 1990s: the geometric era
Variability: Camera position Illumination

Alignment

Shape: assumed known

Roberts (1965); Lowe (1987); Faugeras & Hebert (1986); Grimson & Lozano-Perez (1986); Huttenlocher & Ullman (1987)
Recall: Alignment

• Alignment: fitting a model to a transformation between pairs of features (*matches*) in two images

\[\sum_i r(T(x_i), x'_i) \]

Find transformation T that minimizes

Svetlana Lazebnik
Recognition as an alignment problem: Block world

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b) A blocks world scene. c) Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral description of the scene, formed automatically from the single image. e) The 3-d scene displayed with a viewpoint different from the original image to demonstrate its accuracy and completeness. (b) - (e) are taken from [64] with permission MIT Press.)

Representing and recognizing object categories is harder...

ACRONYM (Brooks and Binford, 1981)
Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)
Recognition by components

Biederman (1987)

Primitives (geons)

Objects

Generalized cylinders
Ponce et al. (1989)

General shape primitives?

Zisserman et al. (1995)

Forsyth (2000)
History of ideas in recognition

- 1960s – early 1990s: the geometric era
- 1990s: appearance-based models
Empirical models of image variability

Appearance-based techniques

Turk & Pentland (1991); Murase & Nayar (1995); etc.
Eigenfaces (Turk & Pentland, 1991)
Color Histograms

History of ideas in recognition

• 1960s – early 1990s: the geometric era
• 1990s: appearance-based models
• 1990s – present: sliding window approaches
Sliding window approaches
Sliding window approaches

- Turk and Pentland, 1991
- Belhumeur, Hespanha, & Kriegman, 1997
- Schneiderman & Kanade 2004
- Viola and Jones, 2000
- Schneiderman & Kanade, 2004
- Argawal and Roth, 2002
- Poggio et al. 1993
History of ideas in recognition

• 1960s – early 1990s: the geometric era
• 1990s: appearance-based models
• Mid-1990s: sliding window approaches
• Late 1990s: local features
Local features for object instance recognition

Large-scale image search
Combining local features, indexing, and spatial constraints

Image credit: K. Grauman and B. Leibe
Large-scale image search
Combining local features, indexing, and spatial constraints

Philbin et al. ‘07
Large-scale image search
Combining local features, indexing, and spatial constraints

Google Goggles in Action
Click the icons below to see the different ways Google Goggles can be used.

[Images of various categories: Landmark, Book, Contact Info, Artwork, Places, Wine, Logo]

Available on phones that run Android 1.6+ (i.e. Donut or Eclair)
History of ideas in recognition

- 1960s – early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
Parts-and-shape models

• Model:
 – Object as a set of parts
 – Relative locations between parts
 – Appearance of part
Constellation models

Pictorial structure model

Fischler and Elschlager(73), Felzenswalb and Huttenlocher(00)

\[
\Pr(P_{\text{tor}}, P_{\text{arm}}, \ldots | \text{Im}) \propto \prod_{i,j} \Pr(P_i | P_j) \prod_i \Pr(\text{Im}(P_i))
\]

part geometry

part appearance
Discriminatively trained part-based models

History of ideas in recognition

- 1960s – early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features
Bag-of-features models
Bag-of-features models

Object → Bag of ‘words’

Svetlana Lazebnik
Objects as texture

• All of these are treated as being the same

• No distinction between foreground and background: scene recognition?
Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Origin 1: Texture recognition

Origin 2: Bag-of-words models

Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)
Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/
Origin 2: Bag-of-words models

• Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)
Bag-of-features steps

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
4. Represent images by frequencies of “visual words”
1. Feature extraction

- Regular grid or interest regions
1. Feature extraction

- Detect patches
- Normalize patch
- Compute descriptor
1. Feature extraction

Slide credit: Josef Sivic
2. Learning the visual vocabulary

Slide credit: Josef Sivic
2. Learning the visual vocabulary

Slide credit: Josef Sivic
2. Learning the visual vocabulary

Clustering

Visual vocabulary

Clustering

Slide credit: Josef Sivic
Clustering and vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be “universal”

- The codebook is used for quantizing features
 - A *vector quantizer* takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word
Example codebook

Source: B. Leibe

Appearance codebook
Visual vocabularies: Issues

• How to choose vocabulary size?
 • Too small: visual words not representative of all patches
 • Too large: quantization artifacts, overfitting

• Computational efficiency
 • Vocabulary trees
 (Nister & Stewenius, 2006)
But what about layout?

All of these images have the same color histogram
Spatial pyramid

Compute histogram in each spatial bin
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)
Scene category dataset

Multi-class classification results
(100 training images per class)

<table>
<thead>
<tr>
<th>Level</th>
<th>Weak features</th>
<th>Strong features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(vocabulary size: 16)</td>
<td>(vocabulary size: 200)</td>
</tr>
<tr>
<td></td>
<td>Single-level</td>
<td>Pyramid</td>
</tr>
<tr>
<td>0 (1 × 1)</td>
<td>45.3 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>1 (2 × 2)</td>
<td>53.6 ± 0.3</td>
<td>56.2 ± 0.6</td>
</tr>
<tr>
<td>2 (4 × 4)</td>
<td>61.7 ± 0.6</td>
<td>64.7 ± 0.7</td>
</tr>
<tr>
<td>3 (8 × 8)</td>
<td>63.3 ± 0.8</td>
<td>66.8 ± 0.6</td>
</tr>
</tbody>
</table>
Caltech101 dataset

Multi-class classification results (30 training images per class)

<table>
<thead>
<tr>
<th>Level</th>
<th>Weak features (16)</th>
<th>Strong features (200)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single-level</td>
<td>Pyramid</td>
</tr>
<tr>
<td>0</td>
<td>15.5 ±0.9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>31.4 ±1.2</td>
<td>32.8 ±1.3</td>
</tr>
<tr>
<td>2</td>
<td>47.2 ±1.1</td>
<td>49.3 ±1.4</td>
</tr>
<tr>
<td>3</td>
<td>52.2 ±0.8</td>
<td>54.0 ±1.1</td>
</tr>
</tbody>
</table>
History of ideas in recognition

• 1960s – early 1990s: the geometric era
• 1990s: appearance-based models
• Mid-1990s: sliding window approaches
• Late 1990s: local features
• Early 2000s: parts-and-shape models
• Mid-2000s: bags of features
• Present trends: combination of local and global methods, context, deep learning
Beyond AlexNet
These are the “VGG” networks. “Perceptual Loss” in generative deep learning refers to these networks.
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A-LRN</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layers</td>
<td>11</td>
<td>11</td>
<td>16</td>
<td>16</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weight</td>
<td>weight</td>
<td>weight</td>
<td>weight</td>
<td>weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>layers</td>
<td>layers</td>
<td>layers</td>
<td>layers</td>
<td>layers</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>(224 × 224 RGB image)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conv3-64</td>
<td>conv3-64</td>
<td></td>
<td>conv3-64</td>
<td>conv3-64</td>
<td>conv3-64</td>
</tr>
<tr>
<td>Maxpool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conv3-128</td>
<td>conv3-128</td>
<td></td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
</tr>
<tr>
<td>Maxpool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conv3-256</td>
<td>conv3-256</td>
<td></td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
</tr>
<tr>
<td>Maxpool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conv3-512</td>
<td>conv3-512</td>
<td></td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
</tr>
<tr>
<td>Maxpool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conv3-512</td>
<td>conv3-512</td>
<td></td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
</tr>
<tr>
<td>Maxpool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conv3-512</td>
<td>conv3-512</td>
<td></td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
</tr>
<tr>
<td>Maxpool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conv3-512</td>
<td>conv3-512</td>
<td></td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
</tr>
<tr>
<td>Maxpool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC-4096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC-4096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC-1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>soft-max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Number of parameters (in millions).

<table>
<thead>
<tr>
<th>Network</th>
<th>A, A-LRN</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of parameters</td>
<td>133</td>
<td>133</td>
<td>134</td>
<td>138</td>
<td>144</td>
</tr>
</tbody>
</table>
Table 4: ConvNet performance at multiple test scales.

<table>
<thead>
<tr>
<th>ConvNet config. (Table 1)</th>
<th>smallest image side</th>
<th>top-1 val. error (%)</th>
<th>top-5 val. error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>train (S)</td>
<td>test (Q)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>256</td>
<td>224,256,288</td>
<td>28.2</td>
</tr>
<tr>
<td>C</td>
<td>256</td>
<td>224,256,288</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>384</td>
<td>352,384,416</td>
<td>27.8</td>
</tr>
<tr>
<td>[256; 512]</td>
<td>256,384,512</td>
<td>26.3</td>
<td>8.2</td>
</tr>
<tr>
<td>D</td>
<td>256</td>
<td>224,256,288</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>384</td>
<td>352,384,416</td>
<td>26.5</td>
</tr>
<tr>
<td>[256; 512]</td>
<td>256,384,512</td>
<td>24.8</td>
<td>7.5</td>
</tr>
<tr>
<td>E</td>
<td>256</td>
<td>224,256,288</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>384</td>
<td>352,384,416</td>
<td>26.7</td>
</tr>
<tr>
<td>[256; 512]</td>
<td>256,384,512</td>
<td>24.8</td>
<td>7.5</td>
</tr>
</tbody>
</table>
This is the “Inception” architecture or “GoogLeNet”

*The architecture blocks are called “Inception” modules and the collection of them into a particular net is “GoogLeNet”
(a) Inception module, naïve version

(b) Inception module with dimensionality reduction
Only 6.8 million parameters. AlexNet ~60 million, VGG up to 138 million

<table>
<thead>
<tr>
<th>type</th>
<th>patch size/stride</th>
<th>output size</th>
<th>depth</th>
<th>#1×1</th>
<th>#3×3 reduce</th>
<th>#5×5</th>
<th>pool proj</th>
<th>params</th>
<th>ops</th>
</tr>
</thead>
<tbody>
<tr>
<td>convolution</td>
<td>7×7/2</td>
<td>112×112×64</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.7K</td>
<td>34M</td>
</tr>
<tr>
<td>max pool</td>
<td>3×3/2</td>
<td>56×56×64</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>convolution</td>
<td>3×3/1</td>
<td>56×56×192</td>
<td>2</td>
<td>64</td>
<td>192</td>
<td></td>
<td></td>
<td>112K</td>
<td>360M</td>
</tr>
<tr>
<td>max pool</td>
<td>3×3/2</td>
<td>28×28×192</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inception (3a)</td>
<td>28×28×256</td>
<td>2</td>
<td>64</td>
<td>96</td>
<td>128</td>
<td>16</td>
<td>32</td>
<td>2.7K</td>
<td>128M</td>
</tr>
<tr>
<td>inception (3b)</td>
<td>28×28×480</td>
<td>2</td>
<td>128</td>
<td>128</td>
<td>192</td>
<td>32</td>
<td>64</td>
<td>380K</td>
<td>304M</td>
</tr>
<tr>
<td>max pool</td>
<td>3×3/2</td>
<td>14×14×480</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inception (4a)</td>
<td>14×14×512</td>
<td>2</td>
<td>192</td>
<td>96</td>
<td>208</td>
<td>16</td>
<td>64</td>
<td>364K</td>
<td>73M</td>
</tr>
<tr>
<td>inception (4b)</td>
<td>14×14×512</td>
<td>2</td>
<td>160</td>
<td>112</td>
<td>224</td>
<td>24</td>
<td>64</td>
<td>437K</td>
<td>88M</td>
</tr>
<tr>
<td>inception (4c)</td>
<td>14×14×512</td>
<td>2</td>
<td>128</td>
<td>128</td>
<td>256</td>
<td>24</td>
<td>64</td>
<td>463K</td>
<td>100M</td>
</tr>
<tr>
<td>inception (4d)</td>
<td>14×14×528</td>
<td>2</td>
<td>112</td>
<td>144</td>
<td>288</td>
<td>32</td>
<td>64</td>
<td>580K</td>
<td>119M</td>
</tr>
<tr>
<td>inception (4e)</td>
<td>14×14×832</td>
<td>2</td>
<td>256</td>
<td>160</td>
<td>320</td>
<td>32</td>
<td>128</td>
<td>840K</td>
<td>170M</td>
</tr>
<tr>
<td>max pool</td>
<td>3×3/2</td>
<td>7×7×832</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inception (5a)</td>
<td>7×7×832</td>
<td>2</td>
<td>256</td>
<td>160</td>
<td>320</td>
<td>32</td>
<td>128</td>
<td>1072K</td>
<td>54M</td>
</tr>
<tr>
<td>inception (5b)</td>
<td>7×7×1024</td>
<td>2</td>
<td>384</td>
<td>192</td>
<td>384</td>
<td>48</td>
<td>128</td>
<td>1388K</td>
<td>71M</td>
</tr>
<tr>
<td>avg pool</td>
<td>7×7/1</td>
<td>1×1×1024</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dropout (40%)</td>
<td>1×1×1024</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linear</td>
<td>1×1×1000</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1000K</td>
<td>1M</td>
</tr>
<tr>
<td>softmax</td>
<td>1×1×1000</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team</td>
<td>Year</td>
<td>Place</td>
<td>Error (top-5)</td>
<td>Uses external data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-------</td>
<td>---------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuperVision</td>
<td>2012</td>
<td>1st</td>
<td>16.4%</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuperVision</td>
<td>2012</td>
<td>1st</td>
<td>15.3%</td>
<td>Imagenet 22k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarifai</td>
<td>2013</td>
<td>1st</td>
<td>11.7%</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarifai</td>
<td>2013</td>
<td>1st</td>
<td>11.2%</td>
<td>Imagenet 22k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSRA</td>
<td>2014</td>
<td>3rd</td>
<td>7.35%</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGG</td>
<td>2014</td>
<td>2nd</td>
<td>7.32%</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoogLeNet</td>
<td>2014</td>
<td>1st</td>
<td>6.67%</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Classification performance.

<table>
<thead>
<tr>
<th>Number of models</th>
<th>Number of Crops</th>
<th>Cost</th>
<th>Top-5 error</th>
<th>compared to base</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.07%</td>
<td>base</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>9.15%</td>
<td>-0.92%</td>
</tr>
<tr>
<td>1</td>
<td>144</td>
<td>144</td>
<td>7.89%</td>
<td>-2.18%</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>8.09%</td>
<td>-1.98%</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>70</td>
<td>7.62%</td>
<td>-2.45%</td>
</tr>
<tr>
<td>7</td>
<td>144</td>
<td>1008</td>
<td>6.67%</td>
<td>-3.45%</td>
</tr>
</tbody>
</table>
Surely it would be ridiculous to go any deeper...

• To be continued with ResNet