Computer Vision
James Hays
Machine Learning Problems

<table>
<thead>
<tr>
<th>Supervised Learning</th>
<th>Unsupervised Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>dimensionality reduction</td>
</tr>
<tr>
<td>Discrete</td>
<td></td>
</tr>
<tr>
<td>classification or categorization</td>
<td>clustering</td>
</tr>
</tbody>
</table>
Dimensionality Reduction

- **PCA, ICA, LLE, Isomap, Autoencoder**

 - PCA is the most important technique to know. It takes advantage of correlations in data dimensions to produce the best possible lower dimensional representation based on linear projections (minimizes reconstruction error).

 - PCA should be used for dimensionality reduction, not for discovering patterns or making predictions. Don't try to assign semantic meaning to the bases.
Machine Learning Problems

Supervised Learning

- classification or categorization

Unsupervised Learning

- clustering

Continuous

- regression

Discrete

- dimensionality reduction
Clustering example: image segmentation

Goal: Break up the image into meaningful or perceptually similar regions
Segmentation for feature support or efficiency

[50x50 Patch]

[Felzenszwalb and Huttenlocher 2004]

[Hoiem et al. 2005, Mori 2005]

[Shi and Malik 2001]
Segmentation as a result

Rother et al. 2004
Types of segmentations

Oversegmentation

Undersegmentation

Multiple Segmentations
Clustering: group together similar points and represent them with a single token

Key Challenges:
1) What makes two points/images/patches similar?
2) How do we compute an overall grouping from pairwise similarities?
How do we cluster?

- **K-means**
 - Iteratively re-assign points to the nearest cluster center
- **Agglomerative clustering**
 - Start with each point as its own cluster and iteratively merge the closest clusters
- **Mean-shift clustering**
 - Estimate modes of pdf
- **Spectral clustering**
 - Split the nodes in a graph based on assigned links with similarity weights
Clustering for Summarization

Goal: cluster to minimize variance in data given clusters

- Preserve information

\[
c^*, \delta^* = \arg\min_{c, \delta} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij} (c_i - x_j)^2
\]
K-means algorithm

1. Randomly select K centers

2. Assign each point to nearest center

3. Compute new center (mean) for each cluster

K-means algorithm

1. Randomly select K centers

2. Assign each point to nearest center

3. Compute new center (mean) for each cluster

K-means

1. Initialize cluster centers: \(c^0 ; t=0 \)

2. Assign each point to the closest center

\[
\delta^t = \arg\min_{\delta} \frac{1}{N} \sum_{j} \sum_{i} \delta_{ij} \left(c_{i}^{t-1} - x_j \right)^2
\]

3. Update cluster centers as the mean of the points

\[
c^t = \arg\min_{c} \frac{1}{N} \sum_{j} \sum_{i} \delta^t_{ij} \left(c_i - x_j \right)^2
\]

4. Repeat 2-3 until no points are re-assigned (t=t+1)
K-means converges to a local minimum
K-means: design choices

• Initialization
 – Randomly select K points as initial cluster center
 – Or greedily choose K points to minimize residual

• Distance measures
 – Traditionally Euclidean, could be others

• Optimization
 – Will converge to a \textit{local minimum}
 – May want to perform multiple restarts
K-means clustering using intensity or color
How to evaluate clusters?

- Generative
 - How well are points reconstructed from the clusters?

- Discriminative
 - How well do the clusters correspond to labels?
 - Purity
 - Note: unsupervised clustering does not aim to be discriminative
How to choose the number of clusters?

• Validation set
 – Try different numbers of clusters and look at performance
 • When building dictionaries (discussed later), more clusters typically work better
K-Means pros and cons

- **Pros**
 - Finds cluster centers that minimize conditional variance (good representation of data)
 - Simple and fast*
 - Easy to implement

- **Cons**
 - Need to choose K
 - Sensitive to outliers
 - Prone to local minima
 - All clusters have the same parameters (e.g., distance measure is non-adaptive)
 - *Can be slow: each iteration is O(KNd) for N d-dimensional points

- **Usage**
 - Rarely used for pixel segmentation
Building Visual Dictionaries

1. Sample patches from a database
 - E.g., 128 dimensional SIFT vectors

2. Cluster the patches
 - Cluster centers are the dictionary

3. Assign a codeword (number) to each new patch, according to the nearest cluster
Examples of learned codewords

Most likely codewords for 4 learned “topics”
EM with multinomial (problem 3) to get topics

http://www.robots.ox.ac.uk/~vgg/publications/papers/sivic05b.pdf Sivic et al. ICCV 2005
Which algorithm to use?

- Quantization/Summarization: K-means
 - Aims to preserve variance of original data
 - Can easily assign new point to a cluster

Summary of 20,000 photos of Rome using “greedy k-means”
http://grail.cs.washington.edu/projects/canonview/
Which algorithm to use?

- Image segmentation: agglomerative clustering
 - More flexible with distance measures (e.g., can be based on boundary prediction)
 - Adapts better to specific data
 - Hierarchy can be useful

http://www.cs.berkeley.edu/~arbelaez/UCM.html
Machine Learning Problems

- Supervised Learning
 - Continuous: regression
 - Discrete: classification or categorization

- Unsupervised Learning
 - clustering
 - dimensionality reduction
The machine learning framework

- Apply a prediction function to a feature representation of the image to get the desired output:

\[f(\text{apple}) = \text{"apple"} \]
\[f(\text{tomato}) = \text{"tomato"} \]
\[f(\text{cow}) = \text{"cow"} \]
The machine learning framework

\[y = f(x) \]

- **Training**: given a *training set* of labeled examples \(\{(x_1, y_1), \ldots, (x_N, y_N)\} \), estimate the prediction function \(f \) by minimizing the prediction error on the training set.

- **Testing**: apply \(f \) to a never before seen *test example* \(x \) and output the predicted value \(y = f(x) \)
Learning a classifier

Given some set of features with corresponding labels, learn a function to predict the labels from the features
Steps

Training

Training Images

Training Labels

Image Features

Training

Learned model

Testing

Test Image

Image Features

Learned model

Prediction

Slide credit: D. Hoiem and L. Lazebnik
Features

• Raw pixels

• Histograms

• GIST descriptors

• …
One way to think about it...

- Training labels dictate that two examples are the same or different, in some sense

- Features and distance measures define visual similarity

- Classifiers try to learn weights or parameters for features and distance measures so that visual similarity predicts label similarity
Many classifiers to choose from

- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- K-nearest neighbor
- RBMs
- Deep Convolutional Network
- Etc.

Which is the best one?
Claim:
The decision to *use* machine learning is more important than the choice of a *particular* learning method.

Deep learning seems to be an exception to this, at the moment, probably because it is learning the feature representation.
Classifiers: Nearest neighbor

- All we need is a distance function for our inputs
- No training required!

\[f(x) = \text{label of the training example nearest to } x \]
Classifiers: Linear

- Find a *linear function* to separate the classes:

\[f(x) = \text{sgn}(w \cdot x + b) \]
Recognition task and supervision

- Images in the training set must be annotated with the “correct answer” that the model is expected to produce.

Contains a motorbike
Spectrum of supervision

Unsupervised

“Weakly” supervised

Fully supervised

Definition depends on task

Slide credit: L. Lazebnik
How well does a learned model generalize from the data it was trained on to a new test set?
Generalization

• Components of generalization error
 – **Bias**: how much the average model over all training sets differ from the true model?
 • Error due to inaccurate assumptions/simplifications made by the model.
 – **Variance**: how much models estimated from different training sets differ from each other.

• **Underfitting**: model is too “simple” to represent all the relevant class characteristics
 – High bias (few degrees of freedom) and low variance
 – High training error and high test error

• **Overfitting**: model is too “complex” and fits irrelevant characteristics (noise) in the data
 – Low bias (many degrees of freedom) and high variance
 – Low training error and high test error

Slide credit: L. Lazebnik
Bias-Variance Trade-off

- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).
Bias-Variance Trade-off

\[E(\text{MSE}) = \text{noise}^2 + \text{bias}^2 + \text{variance} \]

- Unavoidable error
- Error due to incorrect assumptions
- Error due to variance of training samples

See the following for explanations of bias-variance (also Bishop’s “Neural Networks” book):

Bias-variance tradeoff

- **Underfitting**
- **Overfitting**

Error

Complexity

High Bias
Low Variance

Low Bias
High Variance

Slide credit: D. Hoiem
Bias-variance tradeoff

![Graph showing the tradeoff between bias and variance with test error on the y-axis and complexity on the x-axis. Points indicate that high bias corresponds to low variance and low bias corresponds to high variance.](slide_credit_D_Hoiem)
Effect of Training Size

Fixed prediction model

Error

Number of Training Examples

Generalization Error

Slide credit: D. Hoiem
Remember...

• No classifier is inherently better than any other: you need to make assumptions to generalize

• Three kinds of error
 – Inherent: unavoidable
 – Bias: due to over-simplifications
 – Variance: due to inability to perfectly estimate parameters from limited data
How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data
Very brief tour of some classifiers

- K-nearest neighbor
- SVM
- Boosted Decision Trees
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- RBMs
- Etc.
Generative vs. Discriminative Classifiers

Generative Models
- Represent both the data and the labels
- Often, makes use of conditional independence and priors
- Examples
 - Naïve Bayes classifier
 - Bayesian network
- Models of data may apply to future prediction problems

Discriminative Models
- Learn to directly predict the labels from the data
- Often, assume a simple boundary (e.g., linear)
- Examples
 - Logistic regression
 - SVM
 - Boosted decision trees
- Often easier to predict a label from the data than to model the data

Slide credit: D. Hoiem
Classification

• Assign input vector to one of two or more classes

• Any decision rule divides input space into decision regions separated by decision boundaries
Nearest Neighbor Classifier

- Assign label of nearest training data point to each test data point

Voronoi partitioning of feature space for two-category 2D and 3D data

Source: D. Lowe
K-nearest neighbor
1-nearest neighbor
3-nearest neighbor
5-nearest neighbor
Using K-NN

• Simple, a good one to try first

• With infinite examples, 1-NN provably has error that is at most twice Bayes optimal error
Find a linear function to separate the classes:

\[f(x) = \text{sgn}(w \cdot x + b) \]
Find a *linear function* to separate the classes:

\[f(x) = \text{sgn}(w \cdot x + b) \]
Classifiers: Linear SVM

- Find a *linear function* to separate the classes:

\[f(x) = \text{sgn}(w \cdot x + b) \]
What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-class SVM formulation

• In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs

• One vs. others
 • Training: learn an SVM for each class vs. the others
 • Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

• One vs. one
 • Training: learn an SVM for each pair of classes
 • Testing: each learned SVM “votes” for a class to assign to the test example

Slide credit: L. Lazebnik
SVMs: Pros and cons

• Pros
 • Many publicly available SVM packages: http://www.kernel-machines.org/software
 • Kernel-based framework is very powerful, flexible
 • SVMs work very well in practice, even with very small training sample sizes

• Cons
 • No “direct” multi-class SVM, must combine two-class SVMs
 • Computation, memory
 – During training time, must compute matrix of kernel values for every pair of examples
 – Learning can take a very long time for large-scale problems
What to remember about classifiers

• No free lunch: machine learning algorithms are tools, not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers than simple features and smart classifiers

• Use increasingly powerful classifiers with more training data (bias-variance tradeoff)

Slide credit: D. Hoiem
Making decisions about data

• 3 important design decisions:
 1) What data do I use?
 2) How do I represent my data (what feature)?
 3) What classifier / regressor / machine learning tool do I use?

• These are in decreasing order of importance

• Deep learning addresses 2 and 3 simultaneously (and blurs the boundary between them).

• You can take the representation from deep learning and use it with any classifier.