Data Sets and Crowdsourcing

Or: My grad students are starting to hate me, but it looks like we need more training data.

Computer Vision
James Hays
Opportunities of Scale: Data-driven methods

• Previous Lectures
 – The unreasonable effectiveness of data
 – Scene completion
 – Im2gps
 – Recognition via Tiny Images
The Internet has some rough edges

Microsoft was "deeply sorry for the unintended offensive and hurtful tweets from Tay", and would "look to bring Tay back only when we are confident we can better anticipate malicious intent that conflicts with our principles and values".
Outline

• Data collection with experts – PASCAL VOC
• Annotation with non-experts
 – LabelMe – no incentive (altruism, perhaps)
 – ESP Game – fun incentive (not fun enough?)
 – Mechanical Turk – financial incentive
• Human-in-the-loop Recognition
 – Visipedia
Examples

Aeroplane

Bicycle

Bird

Boat

Bottle

Bus

Car

Cat

Chair

Cow
Outline

• Data collection with experts – PASCAL VOC
• Annotation with non-experts
 – LabelMe – no incentive (altruism, perhaps)
 – ESP Game – fun incentive (not fun enough?)
 – Mechanical Turk – financial incentive
• Human-in-the-loop Recognition
 – Visipedia
LabelMe

- http://labelme.csail.mit.edu
- “Open world” database annotated by the community*

knowledge of typical contextual arrangements?

It is often said that vision is effortless, but frequently the visual system is lazy and makes us believe that we understand something when in fact we don’t. In occasions we find ourselves among objects whose names and even functions we may not know but we do not seem to be bothered by this semantic blindness. However, this changes when we are labeling images as we are forced to segment and name all the objects. Suddenly, we are forced to see where our semantic blind-spot is. We become aware of gaps in our visual understanding of what is around us.

This paper contains the notes written by Adela Barriuso describing her experience while using the LabelMe annotation tool [1]. Since 2006 she has been frequently using LabelMe. She has no training in computer vision. In 2007 she started to use LabelMe to systematically annotate the SUN database [7]. The goal was to build a large database there is not a fix set of categories. As the goal is to label all the objects within each image, the list of categories grows unbounded. Many object classes appear only a few times across the entire collection of images. However, not even those rare object categories can be ignored as they might be an important element for the interpretation of the scene. Labeling in these conditions becomes difficult as it is important to keep a list of all the object classes in order to use a consistent set of terms across the entire database avoiding synonyms. Despite the annotator best efforts, the process is not free of noise.

Since she started working with LabelMe, she has labeled more than 250,000 objects. Labeling more than 250,000 objects gives you a different perspective on the act of seeing. After a full day of labeling images, when you walk on the street or drive back home, you see the world in a different way. You see polygons outlining objects, you

“Since she started working with LabelMe, she has labeled more than 250,000 objects.”

Notes on Image Annotation, Barriuso and Torralba 2012.
http://arxiv.org/abs/1210.3448
Building datasets

Annotators

Is there an Indigo bunting in the image?

6000 images from flickr.com

100s of training images

Slide credit: Welinder et al
Task: Find the Indigo Bunting
Task: Find the Indigo Bunting

hit rate (correct detection) vs rate of correct rejection

6% error
15% error
31% error
50% error

Slide credit: Welinder et al
Task: Find the Indigo Bunting

hit rate (correct detection) vs. rate of correct rejection

- 6% error
- 15% error
- 31% error
- 50% error

Slide credit: Welinder et al
Task: Find the Indigo Bunting

- 6% error
- 15% error
- 31% error
- 50% error

Slide credit: Welinder et al
Task: Find the Indigo Bunting

hit rate (correct detection)

rate of correct rejection

6% error
15% error
31% error
50% error

pessimists

Slide credit: Welinder et al
Utility data annotation via Amazon Mechanical Turk

\[X \times 100\ 000 = \$5000 \]

Alexander Sorokin
David Forsyth
CVPR Workshops 2008

Slides by Alexander Sorokin
Amazon Mechanical Turk

Task

Is this a dog?
 o Yes
 o No

Task: Dog?

Answer: Yes

Pay: $0.01

www.mturk.com

Workers
Annotation protocols

• Type keywords
• Select relevant images
• Click on landmarks
• Outline something
• Detect features

.......... anything else
Type keywords

Mechanical Turk Project
If you're using the turk, Be sure to copy the text back into the HIT page so that you can be credited.

- Photo should be rotated 90 degrees left (counter-clockwise)
- Photo should be rotated 90 degrees right (clockwise)
- Photo should be turned upside down
- Photo is oriented properly

Please describe the picture in the box using 10 words or more:

Submit Turk Skip / Load a different photo

The submit button MUST be clicked!

$0.01

http://austinsmoke.com/turk/.
Select examples

Joint work with Tamara and Alex Berg

Select examples

Click on the photos that contain:
revolver, **six-gun**, **six-shooter**, a pistol with a revolving cylinder (usually having six chambers for bullets)

Note: Please pick as many as possible, otherwise your submission may be rejected. You may receive a bonus up to $0.04 based on the quality of your submission. It is OK to have OTHER objects in the photo. PICK ONLY PHOTOS -- NO DRAWINGS OR COMPUTER GRAPHICS.

Below are the photos you have selected. Click to deselect.
Click on landmarks

$0.01

http://vision-app1.cs.uiuc.edu/mt/results/people14-batch11/p7/
Outline something

http://visionpc.cs.uiuc.edu/~largescale/results/production-3-2/results_page_013.html

Data from Ramanan NIPS06
Motivation

$X \times 100\,000 = $5000

- Custom annotations
- Large scale
- Low price
Issues

• Quality?
 – How good is it?
 – How to be sure?

• Price?
 – How to price it?
Annotation quality

Agree within 5-10 pixels on 500x500 screen

There are bad ones.
How do we get quality annotations?
Ensuring Annotation Quality

• Consensus / Multiple Annotation / “Wisdom of the Crowds”
 Not enough on its own, but widely used

• Gold Standard / Sentinel
 – Special case: qualification exam
 Widely used and most important. Find good annotators and keep them honest.

• Grading Tasks
 – A second tier of workers who grade others
 Not widely used
Pricing

• Trade off between throughput and cost
 – *NOT* as much of a trade off with quality
• Higher pay can actually attract scammers
Outline

• Data collection with experts – PASCAL VOC
• Annotation with non-experts
 – LabelMe
 – ESP Game
 – Mechanical Turk
• Human-in-the-loop Recognition
 – Visipedia
Visual Recognition with Humans in the Loop

Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Peter Welinder, Pietro Perona, Serge Belongie

Part of the Visipedia project

Slides from Brian O’Neil
Introduction:

Computers starting to get good at this. If it's hard for humans, it's probably too hard for computers. Semantic feature extraction difficult for computers.

Combine strengths to solve this problem.
The Approach: What is progress?

• Supplement visual recognition with the human capacity for visual feature extraction to tackle difficult (fine-grained) recognition problems.
• Typical progress is viewed as increasing data difficulty while maintaining full autonomy.
• Here, the authors view progress as reduction in human effort on difficult data.
The Approach: 20 Questions

- Ask the user a series of discriminative visual questions to make the classification.
Which 20 questions?

- At each step, exploit the image itself and the user response history to select the most informative question to ask next.

\[p(c \mid U^{t-1}, x) \]

\[p(c \mid U^t, x) \]

\[\max_c p(c \mid U^t, x) \]
Which question to ask?

• The question that will reduce entropy the most, taking into consideration the computer vision classifier confidences for each category.
The Dataset: Birds-200

- 6033 images of 200 species
Implementation

- Assembled 25 visual questions encompassing 288 visual attributes extracted from www.whatbird.com
- Mechanical Turk users asked to answer questions and provide confidence scores.
User Responses.

Fig. 4. Examples of user responses for each of the 25 attributes. The distribution over \{Guessing, Probably, Definitely\} is color coded with blue denoting 0% and red denoting 100% of the five answers per image attribute pair.
Visual recognition

• Any vision system that can output a probability distribution across classes will work.
• Authors used Andrea Vedaldi’s code.
 – Color/gray SIFT
 – VQ geometric blur
 – 1 v All SVM
• Authors added full image color histograms and VQ color histograms
Experiments

- 2 Stop criteria:
 - Fixed number of questions – evaluate accuracy
 - User stops when bird identified – measure number of questions required.
Results

• Average number of questions to make ID reduced from 11.11 to 6.43
• Method allows CV to handle the easy cases, consulting with users only on the more difficult cases.
Key Observations

• Visual recognition reduces labor over a pure “20 Q” approach.
• Visual recognition improves performance over a pure “20 Q” approach. (69% vs 66%)
• User input dramatically improves recognition results. (66% vs 19%)
Strengths and weaknesses

• Handles very difficult data and yields excellent results.
• Plug-and-play with many recognition algorithms.
• Requires significant user assistance
• Reported results assume humans are perfect verifiers
• Is the reduction from 11 questions to 6 really that significant?
Next lecture(s)

- Human-in-the-loop
- Attributes
- More crowdsourcing (ImageNet, MS COCO)