Slow mo guys – Saccades

• https://youtu.be/Fmg9ZOHESgQ?t=4s
Thinking in Frequency

Computer Vision

James Hays
Office hours

• My office hours
 – Monday and Wednesday (CCB 315)

• TA hours
 – Monday 12 to 3 (CCB 360)
 – Tuesday 11 to 1 (CCB 360)
 – Thursday 11 to 1 (CCB 340)
Recap of Monday

• Linear filtering is dot product at each position
 – Not a matrix multiplication
 – Can smooth, sharpen, translate (among many other uses)

• Be aware of details for filter size, extrapolation, cropping
Median filters

• A **Median Filter** operates over a window by selecting the median intensity in the window.
• What advantage does a median filter have over a mean filter?
• Is a median filter a kind of convolution?
Comparison: salt and pepper noise

3x3

5x5

7x7
1. Write down a 3x3 filter that returns a positive value if the average value of the 4-adjacent neighbors is less than the center and a negative value otherwise.

2. Write down a filter that will compute the gradient in the x-direction:

\[\text{grad}_x(y,x) = \text{im}(y,x+1) - \text{im}(y,x) \] for each \(x, y \).
Review: questions

3. Fill in the blanks:

a) _ = \text{D} \times \text{B}

b) \text{A} = _ \times _

c) \text{F} = \text{D} \times _

d) _ = \text{D} \times \text{D}

Filtering Operator
Today’s Class

• Fourier transform and frequency domain
 – Frequency view of filtering
 – Hybrid images
 – Sampling

• Reminder: Read your textbook
 – Today’s lecture covers material in 3.4
Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?
Hybrid Images

Why do we get different, distance-dependent interpretations of hybrid images?
Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/
Thinking in terms of frequency
Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

• Don’t believe it?
 – Neither did Lagrange, Laplace, Poisson and other big wigs
 – Not translated into English until 1878!

• But it’s (mostly) true!
 – called Fourier Series
 – there are some subtle restrictions

...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.
How would math have changed if the Slanket or Snuggie had been invented?
A sum of sines

Our building block:

\[A \sin(\omega x + \phi) \]

Add enough of them to get any signal \(g(x) \) you want!
Frequency Spectra

- example: \(g(t) = \sin(2\pi f t) + \left(\frac{1}{3}\right)\sin(2\pi (3f) t) \)
Frequency Spectra
Frequency Spectra
Frequency Spectra
Frequency Spectra
Frequency Spectra

\[\text{Green signal} = \text{Filtered signal} + \text{White noise} = \text{Filtered signal} \]
Frequency Spectra

\[
\begin{align*}
\text{Signal 1} & = \text{Signal 2} + \text{Signal 3} \\
\text{Signal 2} & = \text{Signal 4} + \text{Signal 5}
\end{align*}
\]
Frequency Spectra

\[A \sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kt) \]
Example: Music

- We think of music in terms of frequencies at different magnitudes
Other signals

• We can also think of all kinds of other signals the same way
Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal there is at a particular frequency
 - Phase encodes spatial information (indirectly)
 - For mathematical convenience, this is often notated in terms of real and complex numbers

Amplitude: \[A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \]
Phase: \[\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)} \]
Salvador Dali invented Hybrid Images?

Salvador Dali

“Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln”, 1976
Fourier Bases

Teases away fast vs. slow changes in the image.

This change of basis is the Fourier Transform
Fourier Bases

in Matlab, check out: `imagesc(log(abs(fftshift(fft2(im)))));`
Man-made Scene
Can change spectrum, then reconstruct
Low and High Pass filtering
The Convolution Theorem

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

\[F[g * h] = F[g]F[h] \]

- Convolution in spatial domain is equivalent to multiplication in frequency domain!

\[g * h = F^{-1}[F[g]F[h]] \]
Filtering in spatial domain

\[
\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 \\
\end{array}
\]
Filtering in frequency domain

1. **Intensity Image**
2. **FFT**
3. **Log FFT Magnitude**
4. **FFT**
5. **Inverse FFT**

Slide: Hoiem
Fourier Matlab demo
FFT in Matlab

• Filtering with fft

```matlab
im = double(imread('...'))/255;
im = rgb2gray(im); % “im” should be a gray-scale floating point image
[imh, imw] = size(im);

hs = 50; % filter half-size
fil = fspecial('gaussian', hs*2+1, 10);

fftsize = 1024; % should be order of 2 (for speed) and include padding
im_fft = fft2(im, fftsize, fftsize); % 1) fft im with padding
fil_fft = fft2(fil, fftsize, fftsize); % 2) fft fil, pad to same size as image
im_fil_fft = im_fft .* fil_fft; % 3) multiply fft images
im_fil = ifft2(im_fil_fft); % 4) inverse fft2
im_fil = im_fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding
```

• Displaying with fft

```matlab
figure(1), imagesc(log(abs(fftshift(im_fft))));, axis image, colormap jet
```