
Elevating the Edge to Be a Peer of the Cloud
Umakishore Ramachandran, Harshit Gupta, Adam Hall, Enrique Saurez, Zhuangdi Xu

Georgia Institute of Technology
Atlanta, Georgia

{rama,hgupta,ach,esaurez,xzdandy}@gatech.edu

Abstract—Enabling next generation technologies such as
self-driving cars or smart cities requires us to rethink
the way we support their applications. The emergence
of these technologies is fueled by the proliferation of a
large number of devices in the Internet of Things. These
devices have the potential to generate massive amounts
of data, and applications supporting them often require
this data to be processed in a timely manner. Because of
these requirements, we must augment and extend the Cloud
computing model to better serve such applications. The
backhaul links connecting clients to Cloud data centers
could quickly become overwhelmed by such data, and the
physical distance of these data centers from clients prevents
low-latency response times. To meet the challenges posed
by emerging IoT applications, we must provide Cloud-
like functionality closer to the edge of the network, where
clients and their data live. We propose to elevate the Edge
to be a peer of the Cloud for addressing these challenges.

Index Terms—Edge/Cloud, Distributed Systems, Scalabil-
ity, Geo-distribution, Programming Idioms, Distributed
Data, Execution Models, Orchestration

I. Introduction
The confluence of advances in hardware devices and
software applications serves as a driver for enabling
next-generation technologies. As hardware capabilities
increase, applications emerge and evolve to exploit those
capabilities and realize new functionalities. A leading
example of this phenomenon can be seen in the Cloud
computing revolution, which commoditized hardware
to support applications serving vast numbers of users
from a few large, centralized data centers. Recently,
this paradigm has reached an inflection point. The In-
ternet of Things (IoT) has introduced an unprecedented
number of low-cost hardware devices that constantly
sense and generate data. At the same time, applications
have emerged to convert this sensed data into actionable
knowledge. Meeting all of the requirements of these
applications from the Cloud alone is challenging for
several reasons. First, the amount of data generated by
devices can quickly saturate the bandwidth of backhaul
links to the Cloud. Second, many applications require
low-latency responses for making decisions on sensed
data, which becomes difficult to achieve the further these
devices are from Cloud data centers. And finally, there
may be regulatory or privacy restrictions on the data
generated by devices, meaning that such data should be
kept in the same place where it is generated. For these
reasons, enabling next-generation technologies requires

Cellular Access
Network

μDC

Cloud

μDC

Geo-Distributed

Fig. 1: An Edge computing ecosystem. IoT devices
connect to micro data centers located across the edge of
the network. Edge nodes in these data centers provide
first stage data aggregation and processing, and ensure
only relevant data is sent to the Cloud.

us to reconsider the current trend of serving applications
from the Cloud alone.
Over the past few years we have seen a growing
interest in the use of Edge computing as a way to
meet the unique challenges posed by emerging IoT
applications. In the Edge computing paradigm, appli-
cations are served from a series of micro data centers
that are geographically distributed throughout the last
mile of the network. These micro data centers can be
composed of hardware ranging from a few single-board
computers to a couple racks of servers. By collocating
computing resources close to client devices, we are able
to provide several points of data aggregation with low-
latency connectivity and localized processing and storage
of data. The advantages of Edge computing align with
the requirements of emerging IoT applications. Figure 1
depicts a geo-distributed Edge ecosystem. On the right,
WiFi-connected IoT devices are served by a micro data
center via a router with wired Internet access. On the left,
Augmented Reality (AR) enabled mobile devices connect
to the micro data center via the cellular network. Both of
these micro data centers aggregate and pre-process data
from all client devices and send relevant portions of this
data to the Cloud for further processing.
The micro data centers that make up an Edge com-



puting environment may exist in a variety of places,
such as the wiring closet in a hotel or the base of
a cell tower. Given the limited physical footprint of
such environments, the hardware resources available in
a micro data center are considerably less than those of
its Cloud-based counterpart. Despite this limitation, we
must provide a high degree of multi-tenancy at the Edge
to support a variety of applications that may co-exist on
the same IoT devices. Further, we must provide Cloud-
like functionality such that developers need not struggle
through creating highly distributed applications to run
on a heterogeneous, widespread infrastructure. Enabling
a seamless transition from hosting applications solely in
Cloud data centers to micro data centers at the Edge
means we must elevate the Edge to be a peer to the
Cloud.
There are several challenges to extending the Cloud
model to the Edge. These challenges can be grouped
into four key research areas:
Programming Models: We must devise programming
frameworks for facilitating the composition of complex
latency sensitive applications across the Edge. These
frameworks should allow developers to seamlessly adapt
best practices from application development for the
Cloud to the Edge.
Storage: We must create new geo-distributed data repli-
cation and consistency models commensurate with the
network heterogeneity of the Edge while being resilient
to coordinated failures. These models will allow us to
provide a similar degree of data retention and retrieval
as the Cloud on much less reliable infrastructures.
Autonomous Execution & Orchestration: Edge en-
vironments must provide support for the rapid dynamic
deployment of application components to achieve multi-
tenancy and elasticity with respect to limited computa-
tional, networking, and storage resources.
Runtimes: To achieve a high degree of multi-tenancy
on limited hardware resources, we must look beyond
traditional models of hosting applications in dedicated
virtual machines or containers. Instead, we must develop
efficient runtimes to allow a large number of applications
to co-exist on a platform with the same isolation and
security guarantees provided by Cloud hosting.
In this paper we present our vision of the direction in
which the Edge and Cloud are moving. Although space
does not permit us to delve into every detail, we present
key points as follows. We begin with the discussion of a
next-generation application that exemplifies the need for
Edge computing, and then describe how each research
area meets this need. Section II describes our next-
generation application: an Augmented Reality enabled
parade experience with millions of attendees. Next we
describe the application’s need for Programming Models
in Section III, Autonomous Execution and Orchestration
in Section IV, Storage in Section V, and Runtimes in
Section VI. Finally, we conclude with an overview of the

Edge-enabled future which represents the next evolution
of Cloud computing.

II. A Next Generation Application for
the Edge
To motivate our vision of the necessity for Edge comput-
ing, we present a futuristic example application which
describes the evolution of one of the Cloud’s most
popular use cases.
Social media is considered a killer application of the
Cloud computing revolution. The advent of this tech-
nology has enabled people to share photos, video, and
text with friends and family in different locations. The
next generation of social media applications will be
far more immersive. People will use phones and other
AR devices to bridge their virtual interactions with
the real world. These interactions will be bolstered by
the rich streams of data from IoT devices, providing
unprecedented experiences.
Consider a scenario where people gather for a parade,
such as the annual Macy’s Thanksgiving Day Parade in
New York City. Events of this type can host millions of
spectators and thousands of exhibitors over parade routes
spanning many city miles [5]. In our futuristic scenario,
each spectator has a camera-equipped AR device (such
as a phone or tablet) that overlays rich data feeds on
their views of the event. Each of these views is highly
individualized, and may include information about pa-
rade floats, commentary from other spectators, video or
text conversations with friends, and data gathered from
sensors along the route. These devices give spectators
access to parts of the parade only available through AR,
and allow them to interact with parade elements in real
time. Additionally, parade personnel, law enforcement,
and paramedics utilize AR-enabled headsets to assist
spectators through tasks such as locating children who
have been separated from parents or ensuring the safety
and security of attendees by automatically monitoring
for any suspicious activities. Providing these experiences
requires us to process a large amount of data while
ensuring consistency and availability among devices
existing local to the same area in which spectators and
parade exhibitions exist.
Enabling the AR-equipped application in the above sce-
nario presents several challenges. First, we must process
a series of high resolution video and sensor data over
a shared communications infrastructure. If we conser-
vatively estimate the data feed from each AR-enabled
device will require 10 Mbps of bandwidth [7], the large
number of parade attendees could quickly saturate a
10 Gbps uplink to the Cloud. Second, this data must
be processed in a timely manner, such that information
associated with the object in view may be retrieved and
overlayed on that object without perceptible delay or
inconsistency to the user. If two users are looking at the
same part of the parade route, it is important that they



Feedback

End to End
SLO

SELECT label, information 
FROM phone.stream 
WHERE frame CONTAINS "SNOOPY FLOAT"

Query

DFG

Fig. 2: An example application specified using a SQL-
like declarative language and its corresponding DFG.
It specifies an end-to-end latency SLO and contains
the decomposed application with three stages: detection,
filtering, and information extraction/feedback.

see the same common data displayed at the same time to
enable a shared experience. This means video data must
be transmitted with low latency. Chen et al. have shown
processing data in the Cloud alone may introduce too
much latency to achieve the required response times of
interactive applications [8]. And finally, data associated
with each object and user may be privacy sensitive in
nature, meaning that data may need to remain local
to its source. For example, an attendee could use their
personal device to locate a family member in the crowd
via facial recognition, and local laws may require this
tracking to be performed within the same region where it
originates. When we consider that similar operations are
being performed in tandem by thousands of users within
the same area, we quickly realize that enabling such
functionality without the Edge can become untenable.
Supporting the requirements of a next-generation social
media application across the Edge requires us to make
inroads in several research areas. In the following sec-
tions, we discuss the challenges of each area and how
they relate to the application scenario we just described.

III. Programming Models
More than a decade of research into Cloud computing
has provided us with robust programming models that al-
low for the seamless development of applications for the
Cloud. The reliability of the Cloud allows these models
to abstract away the need to account for issues such as
backend failures or latency and bandwidth limitations
between services supporting application components.
This is in contrast to development for the Edge, where
creating effective applications currently requires several
careful considerations. The placement and orchestration
of application components at the Edge is difficult to
perform manually, requiring domain expertise beyond
the purview of most developers. At the same time, it is
equally difficult to perform these operations in an auto-
mated fashion without some strong notion of application
semantics. To address this problem, we must provide
simple programming models that either implicitly or
explicitly expose enough semantic information without

creating undue burdens on developers.
The Edge-centric programming model that we provide
must hide all the complexities of where and how a
program should be executed to achieve optimal perfor-
mance. For example, the programming model provided
by the Apache Spark cluster-computing framework [4]
allows developers to harness the power of big data with-
out needing to understand the intricacies of placement
and availability in a distributed computing environment.
We must support the same degree of functionality for de-
velopers at the Edge by providing the following features
in the programming model.

A. Composition & Synthesis of Application
Pipelines
In our motivating scenario, users rely on video streams
to enhance their experiences. One enhancement to this
experience is the ability to identify and track parade
objects. For example, a spectator may wish to be no-
tified when the camera sees their favorite celebrity, and
then retrieve information about the float on which the
celebrity is riding. This operation requires performing
image recognition on video frames from the AR device
to identify the celebrity’s current position and then track-
ing the celebrity and float across the spectator’s field of
view. A programming model at the Edge could provide
a declarative framework with a SQL-like syntax to allow
developers to express their intentions for tracking objects
via image recognition without the need to understand the
specifics of how the task is performed, similar to BlazeIT
[13]. The declarative framework provides a way for users
to intuitively compose queries for desired outcomes. The
framework would automatically synthesize the query
into a Data Flow Graph (DFG) where each node is a
function that must be executed in a pipelined manner
to service the query. In this way, domain experts in
fields such as computer vision can guide the synthesis
of complex application components without needing to
be directly involved in the application process, and de-
velopers can benefit from this expertise without needing
to learn new information unrelated to their discipline.
Additionally, this decomposition helps the orchestrator
to improve the resource utilization, which is discussed
in more detail in section IV.

B. Performance Guarantees Through Ser-
vice Level Objectives
From a developer’s perspective, the unaided deployment
of applications on an Edge computing infrastructure is
a daunting task. Applications have diverse performance
requirements, and to ensure these requirements are met
the developer would need to keep track of variables such
as the locations of both clients and micro data centers,
the network connectivity statuses of these micro data
centers, and the current resource capacities of nodes
across the Edge. To alleviate this burden, developers
should instead be provided with a way to express their



application performance requirements as a series of
Service Level Objectives (SLOs) which provide hints
to the resource orchestrator (Section IV) about each
application’s requirements. The SLOs must specify end-
to-end requirements so that all sources of performance
overheads are considered during the orchestration of
application components across a heterogeneous infras-
tructure (Section IV-A).

C. Failure Handling
When working within Edge computing environments,
we cannot assume the availability of consistent power,
cooling, or connectivity. As such, the framework should
provide a strong failure handling model to ensure the
pipelined execution of components in the DFG can
recover and complete in the event of failures. For ex-
ample, if one or more Edge nodes disappear during
the pipelined execution of an image processing oper-
ation, the framework should recognize this event and
redistribute workloads to available nodes while updating
graph dependencies.

IV. Autonomous Execution & Orches-
tration
Applications expressed in the above programming model
need to be executed on a heterogeneous Edge-computing
infrastructure while respecting SLO specifications. Since
resources in an Edge computing environment are rela-
tively limited, ensuring they are carefully managed is
essential to their efficient operation. These resources
will exist across geo-distributed micro data centers with
heterogeneous hardware configurations, so we cannot
assume the same level of availability in network connec-
tivity or some reliable central authority for governance.
Instead, the control plane that oversees orchestration
operations must be decentralized. This decentralized
system will be responsible for monitoring the health
and resource utilization of Edge nodes and using this
information to make scheduling decisions. Several com-
ponents are necessary to support such a system:

A. SLO-aware Deployment of Applications
Applications need to be executed on heterogeneous Edge
computing infrastructures while adhering to end-to-end
SLO specifications (Section III-B). The orchestrator
should take specifications that have been synthesized by
the programming model and use them to inform its deci-
sion on placing application components throughout the
Edge. For example, there may be many applications that
need to process video on a limited number of specialized
GPU or ASIC hardware devices, meaning the orchestra-
tor must carefully distribute workloads commensurate
with the performance objectives of each application. In
order to better estimate end-to-end performance, Edge-
centric storage middleware and the programming model
runtime should expose estimates of performance metrics
like execution latencies to the orchestrator. In addition to

these application-specific requirements, the orchestrator
must also consider that power, cooling, and connectivity
may be inconsistent across micro data centers, leading
to a higher degree of entropy in the overall state of the
resource pool.

B. Monitoring & Dynamic Reconfiguration
The Edge computing ecosystem is prone to a high degree
of dynamism, which stems from circumstances such
as the increase or decrease of activity in a specific
geographic area, the mobility of clients, and differences
in network connection quality due to congestion. For
example, in our parade scenario some exhibits may be
far more popular than others, leading to localized spikes
in activity as those parts of the parade move through
different points along the route. The orchestration engine
must continually meet guaranteed SLOs despite this
dynamism. A first step toward meeting this requirement
is maintaining up-to-date knowledge on the state of
the Edge computing ecosystem, for which continuous
monitoring of that system is necessary. Resource moni-
toring is essential to tracking the current status of SLOs,
but in a highly geo-distributed environment it can be
complicated to scale and manage such monitoring op-
erations. As a result, distributed monitoring implemen-
tations and aggregation are necessary. Monitoring the
status of many applications across a vast infrastructure
leads to a tremendous amount of data collection, which
in itself is a source of high overhead. To enable de-
centralized monitoring at the Edge, efficient monitoring
mechanisms must be created so that the responsiveness
of the control plane is not slowed down by the overhead
of observation. SLOs should be guaranteed in spite of
system dynamism through the dynamic reconfiguration
of applications. Such reconfiguration involves scaling
application components both horizontally and vertically,
as well as enabling the live migration of applications
commensurate with client mobility.

C. Control Plane Decentralization
To achieve high availability and tolerance from unreli-
able networks, the control plane requires decentralized,
largely autonomous components which can provide or-
chestration for different applications on the same shared
infrastructure. Each of these orchestrator components
should refer to its own knowledge of the infrastructure’s
current state to make decisions. In our parade example,
an orchestrator which exists in the micro data center
serving a block of the city would have immediate knowl-
edge of its own environment and cached knowledge of
the Edge computing infrastructure at large. Typically,
orchestration algorithms assume that the state visible to
them exists as the authoritative copy and is perfectly
synchronized with the actual state of the infrastructure
[19]. Depending on the structure of an application, state
synchronization may be required if that application’s
components are placed across the domains of multiple
controllers. To support this logic, state synchronization



mechanisms must be built to allow decentralized or-
chestrator components to keep each other up-to-date, in
turn providing the illusion of single-copy to orchestration
algorithms.

D. Efficient Resource Utilization
Ensuring the orchestrator is able to maximize the effi-
cient utilization of resources is of particular importance
due to the limited hardware capacity of Edge nodes.
There are three key components essential to this goal.
First, the load generated by applications should be
spread throughout a number of appropriate Edge nodes
by use of geo-aware load balancing schemes. These
schemes must understand the notion of correlated failure
and the properties of geo-distributed hardware. Their
interactions with the Programming and Storage frame-
works can improve the quality of load balancing through
context awareness. Second, the Programming Model’s
decomposition of applications into multiple components
should be considered by the orchestrator. Individual
application components from this decomposition may
have their computation scheduled on different resources
to improve utilization. As an added benefit, this decom-
position can also allow the Edge environment to exploit
the microservices trend that has been seen in Cloud
environments. However, scheduling the computation of
different application components can potentially require
coordination between multiple micro data centers in
close proximity to enable cross data center deployments.
Finally, application components should be re-utilized
whenever possible. To provide such functionality, these
components must be discoverable and associated with
some contextual information, since two instances of the
same service may not perform the exact same operations.
Additional labeling of application context and properties
could help the orchestrator perform better matching op-
erations, leading to more sound decisions in component
reuse.
The orchestration framework is illustrated in Figure 3.
In this diagram, distributed monitoring components track
the health and performance of both micro data center
hardware and application components and report these
statistics to the distributed orchestrators. These orches-
trators coordinate among each other to share monitoring
information and use this knowledge to make intelligent
management decisions guaranteeing end-to-end SLOs
are met.

V. Storage
While the Programming Model and Control Plane we
described handle the tasks of defining and scheduling ap-
plication executions, we still must account for handling
data generated by those applications. The generated data
might contain an application’s mutable state or might
serve as input for another application. The typical way
of handling such data is by leveraging platform services
like key-value stores and publish-subscribe systems, so

Control Plane Control Plane

μDC μDC

Control Plane

Monitoring

Coordination

Server Server Server Server Monitoring

Application
Components

End to End
SLO

Fig. 3: An example orchestration framework, consisting
of distributed monitoring and control operations to guar-
antee end-to-end SLOs.

that the management of data is abstracted away from the
developer.
In a Cloud-only ecosystem, services can be provided by
deploying off-the-shelf solutions like Apache Cassandra
[16] and Pulsar [3] that are designed for reliable data
center environments. Because of these design decisions,
the divergent nature of an Edge computing infrastructure
poses several challenges to such services. First, the
inter-node latency in an Edge infrastructure is orders
of magnitude higher than that of a Cloud data center.
These services typically rely on consistently available
connectivity with very low latencies to synchronize
operations and data between instances. Second, an Edge
infrastructure may be exposed to a variety environments,
any of which may introduce conditions that can make the
infrastructure more prone to failures. These failures can
lead to split-brain scenarios where different instances are
unable to perform the synchronizations required to main-
tain data consistency. Finally, the fact that multiple Edge
computing nodes might share single sources of power
and network connectivity makes correlated failures much
more likely. Such failures increase the likelihood that
data will be unavailable at the time a client requests it.
We elaborate on some of the approaches to addressing
these challenges.

A. Data Partitioning for Low Latency
Data partitioning in key-value stores like Cassandra
and publish-subscribe systems like Pulsar fundamentally
relies on selecting the best server to host a particular
partition of data. To ensure low-latency data access, the
selection of the target server for hosting a data partition
should be done by taking into account the locations
of interested clients. One solution to enabling such
functionality at the Edge comes from creating data store
systems where a developer may provide constraints on
data access latencies which the system uses to determine
the optimal set of nodes for hosting each client’s data to
meet those constraints, as illustrated in Figure 4.



Developer specified 
latency bound

Interested 
clients

Cloud servers

Data
item

As
yn

c r
ep

lic
at

ion

Sync
replication

Hot data

Cold data 

Fig. 4: A high-level view of storage between the Edge
and Cloud. Relevant data is synchronized between nodes
closest to clients who use it, and asynchronously repli-
cated to the Cloud.

B. Consistency vs. Fault-Tolerance Tradeoff
Replication is the most popular approach to build-
ing fault-tolerant systems. However, with this approach
comes the added expense of maintaining consistency
between data replicas. To cope with such overhead,
a number of solutions based on eventual consistency
became prominent [6] [15]. However, researchers at
Google observed that coping with eventual consistency
takes up significant development time and introduces
complications and bugs [18]. To provide strong consis-
tency in a geo-distributed setting, all replicas should be
located in proximity to each other, such that synchroniza-
tion among them is fast. Unfortunately, doing so leads
to an increased vulnerability to correlated failures [9].
One way to cope with this tradeoff is through the use of
novel consistency models as introduced by Gupta, et al.
[10] and Saurez at al. [17]. The consistency semantics in
these works allow the system to perform geo-replication
with a reasonable degree of fault-tolerance and lower
overhead than traditional geo-replicated databases.

C. Interplay Between Edge and Cloud
The limited resource capacity on Edge nodes makes
an Edge-Cloud interplay necessary. Since applications
hosted at the Edge often have real-time requirements,
the relevance of a data item is likely to decrease over
time. In this respect, eventually each data item becomes
irrelevant for real-time operations. Such older data-items
could be evicted from Edge nodes and pushed to Cloud-
based datastores for long-term retention and historical
queries. Doing so conserves the limited storage resources
of Edge nodes for critical/relevant data.

Hotspot 
detector Partition 

migrator
Datastore stats manager

Node stats 
collector

Data migration traffic

Data migration 
protocolMonitoring 

traffic

Replica locator 

Migration 
handler

U
pd

at
e 

re
pl

ic
at

io
n 

in
fo

Latency-aware 
data partitioner

Fig. 5: Storage system control-plane architecture. Par-
titioning data and detecting workload hotspots is per-
formed using performance metrics collected from indi-
vidual nodes. Replica location metadata on each node is
updated upon new partition creation or data migration.

D. Handling Skews in Workload
In a latency-based placement approach, data items of-
ten end up being stored on the nodes closest to the
source of that data. In our motivating scenario, there
are likely to be more people in popular sections of the
parade route. This population distribution can lead to
skews in activity distribution (e.g., a high density of
spectators will generate far more data). Because of these
skews, hotspots in workload distributions could develop
which in turn would adversely impact the tail latency
of responses [14]. One way to address this problem is
through the use of data distribution schemes that are a
hybrid of (1) schemes that partition data for low-latency,
and (2) schemes that provide even load distribution. One
such policy for key-value stores is proposed by Gupta,
et al. [11], wherein the partition key of a data item is
calculated using its location and a consistent hash of its
timestamp and item-type field. Another approach worth
considering is the live migration of data away from
overloaded nodes in order to reduce the load on them
and handle skews of a transient nature.
Each approach to addressing the challenges of storage
at the Edge should be joined together in creating an
overall storage architecture, as shown in Figure 5. This
architecture would seamlessly provide the fast, reliable
storage paradigms that developers are used to using in
the Cloud, while accounting for the intricacies of Edge
environments behind the scenes.

VI. Runtimes
In a traditional Cloud model, we may assume the notion
of unlimited computing power. This assumption allows
us to provision continuously running dedicated virtual
machines or containers for hosting each application.
In contrast, the limited computing resources available
in a micro data center make it impractical to perform
such provisioning in every situation. To enable the high



degree of multi-tenancy needed to support a variety of
applications running at the Edge, we must devise new
paradigms for the runtimes which execute applications.
If we consider our motivating scenario, we can see
that different application components will have differ-
ent computational lifetimes. For example, if the social
media platform is performing a large amount of image
recognition processing while emergency personnel look
for a missing child, it would make sense to devote
a longer running container to these operations during
periods of high activity. In contrast, if content generation
from users is infrequent during the same period, it would
make sense to serve these operations on an ad-hoc basis.
These patterns suggest we can achieve a higher degree
of efficiency by adopting a hybrid model that hosts
applications commensurate with their needs.
One method for hosting applications on an ad-hoc basis
comes from the notion of Serverless Computing, which
is sometimes also known as Function-as-a-Service. In
the Serverless computing paradigm, applications exist as
single purpose functions which only execute for a limited
period of time when they are called and then shut down
until needed again. Each function is hosted in a separate
container which is instantiated upon function invocation
and destroyed after a brief period of inactivity. Since
application components only exist on an as-needed basis,
we avoid unnecessarily committing resources and in turn
allow a greater degree of sharing for those resources.
The Serverless computing model allows us to achieve
the much higher degree of multi-tenancy needed to serve
a large number of clients.
Longer running applications would best be served by the
more traditional method of hosting in containers. Con-
tainers provide a lightweight mechanism for segmenting
operating system components and limiting resource con-
sumption specific to one or more processes. However, we
still must ensure these containers are properly adapted
for Edge computing scenarios. For example, situations
may arise where long-running applications must be tem-
porarily pre-empted to serve spikes in demand for short-
term applications. Ensuring that we may safely make
these trade-offs allows us to provide many of the benefits
of a traditional hosting model when necessary while still
maximizing the utilization of limited resources.
In both scenarios, opportunities for innovation exist in
two ways. First, we can improve container runtimes to
meet the requirements of the Edge. The runtimes in state-
of-the-art container frameworks include a broad array
of functionality which may not be needed in an Edge
computing environment. Such unnecessary functionality
adds overhead which manifests itself in issues such as
the cold start problem, where container instantiations
introduce delays of 300 ms or more before a function can
begin execution. These delays destroy the low-latency
advantages of hosting applications at the Edge and must
be reduced or eliminated. The second opportunity for
innovation exists in developing new runtime methods

Fig. 6: A hybrid execution platform leveraging We-
bAssembly and Container runtimes. Short-term execu-
tions are handled by WebAssembly, whereas longer
running applications are handled by Containers.

for executing applications. For example, Hall et al. [12]
discuss the use of the WebAssembly binary format as
a way to provide strong isolation and resource provi-
sioning mechanisms to Servereless functions without the
overhead of containers.
A hybrid runtime could leverage innovations from
both approaches to provide low-latency application ex-
ecutions. For short-running applications, a lightweight
model such as WebAssembly could be used in a Server-
less platform to provide fast loading and portability. For
longer running applications, the traditional container-
based model could be used. The execution platform
could switch between serving applications with either
model based on their recent characteristics. This plat-
form can be seen illustrated in Figure 6. In this diagram,
short-term application executions from smartphones are
handled by a single WebAssembly runtime. Hosting ap-
plications with WebAssembly allows for a high degree of
efficiency since each application is executing as a thread
under the same runtime process. Long running video
processing applications from smart cameras execute in
containers, with each container existing as one or more
separate processes.

VII. Conclusion
The task of elevating the Edge to be a peer of the Cloud
is not without challenges. However, it is important to
meet these challenges if we wish to enable the broad set
of applications fueled by the Internet of Things boom.
These applications all share common requirements for
dynamic scalability, low-latency communication, and
efficient in-network processing to provide the Sense-
Process-Actuate workflow used in dealing with real-
world data streams, suggesting that there is a common
solution to meet their needs.
Cloud computing has proven a good solution for serving
applications at human perception speeds, many of which
are throughput oriented web applications with humans
in the loop. However, when we consider that many
latency-sensitive IoT applications operate at computa-
tional perception speeds, we see that the centralization
and physical distance of the Cloud from client devices
makes it difficult to support the workflow of these ap-



plications. Often such applications operate independent
of human intervention, relying on machine-in-the-loop
processing to perform rapid decision making. To handle
such workloads, we must provide a way to deal with their
data close to the source. One solution to this problem
comes from the Edge computing paradigm.
The notion of Edge computing seeks to extend the utility
of the Cloud to the last mile of the network. Its goal is to
provide this utility through resources that are hierarchical
and geo-distributed in nature. Unfortunately, today the
Edge exists as a slave of the Cloud. Platforms such
as Azure IoT Edge [2] and Amazon AWS Lambda [1]
provide Edge computing capabilities, but still rely on
the Cloud for the core of their operations. To overcome
this limitation, we need to make the Edge autonomous,
such that it functions even when disconnected from the
Cloud.
To enable an autonomous Edge, horizontal peer-to-peer
interactions among Edge nodes is essential. This need
stems from the fact that different interacting client
devices may be connected to different Edge nodes at
the same time. Such interactions are made possible by
programming model, orchestration, storage, and runtime
paradigms which are specifically tailored to the unique
challenges of the Edge. By building these paradigms,
we elevate the Edge to be a peer to the Cloud, in turn
creating next evolution in Cloud computing.

References
[1] AWS Lambda. https://aws.amazon.com/lambda/.

Accessed: 05-01-2019.
[2] Azure IoT Edge. https://azure.microsoft.com/

en-us/services/iot-edge/. Accessed: 05-01-2019.
[3] Pulsar. https://pulsar.apache.org. Accessed: 05-01-

2019.
[4] Spark Programming Guide. https://spark.apache.

org/docs/2.2.0/rdd-programming-guide.html. Ac-
cessed: 05-01-2019.

[5] The Macy’s Thanksgiving Day
Parade 2016 By The Numbers.
https://www.forbes.com/sites/hayleycuccinello/
2016/11/23/the-macys-thanksgiving-day-parade-
2016-by-the-numbers. Accessed: 05-04-2019.

[6] ABADI, D. Consistency tradeoffs in modern dis-
tributed database system design: Cap is only part
of the story. Computer 45, 2 (2012), 37–42.

[7] BRAUD, T., BIJARBOONEH, F. H., CHATZOPOU-
LOS, D., AND HUI, P. Future networking chal-
lenges: The case of mobile augmented reality. In
IEEE 37th International Conference on Distributed
Computing Systems (2017), pp. 1796–1807.

[8] CHEN, Z., HU, W., WANG, J., ZHAO, S., AMOS,
B., WU, G., HA, K., ELGAZZAR, K., PILLAI,
P., KLATZKY, R., ET AL. An empirical study of
latency in an emerging class of edge computing
applications for wearable cognitive assistance. In
Proceedings of the Second ACM/IEEE Symposium

on Edge Computing (2017).
[9] COUTO, R. S., SECCI, S., CAMPISTA, M. E. M.,

AND COSTA, L. H. M. Latency versus surviv-
ability in geo-distributed data center design. In
IEEE Global Communications Conference (2014),
pp. 1102–1107.

[10] GUPTA, H., AND RAMACHANDRAN, U. Fogstore:
A geo-distributed key-value store guaranteeing low
latency for strongly consistent access. In Proceed-
ings of the 12th ACM International Conference
on Distributed and Event-based Systems (2018),
ACM, pp. 148–159.

[11] GUPTA, H., XU, Z., AND RAMACHANDRAN, U.
Datafog: Towards a holistic data management plat-
form for the iot age at the network edge. In
USENIX Workshop on Hot Topics in Edge Com-
puting (2018).

[12] HALL, A., AND RAMACHANDRAN, U. An exe-
cution model for serverless functions at the edge.
In Proceedings of the International Conference
on Internet of Things Design and Implementation
(2019), ACM, pp. 225–236.

[13] KANG, D., BAILIS, P., AND ZAHARIA, M. Chal-
lenges and opportunities in dnn-based video ana-
lytics: A demonstration of the blazeit video query
engine. CIDR.

[14] KHARE, S., SUN, H., ZHANG, K., GASCON-
SAMSON, J., GOKHALE, A., AND KOUTSOUKOS,
X. Ensuring low-latency and scalable data
dissemination for smart-city applications. In
2018 IEEE/ACM Third International Conference
on Internet-of-Things Design and Implementation
(2018), pp. 283–284.

[15] KIRKELL, J. Consistency or bust: Breaking a riak
cluster, 2011.

[16] LAKSHMAN, A., AND MALIK, P. Cassandra:
a decentralized structured storage system. ACM
SIGOPS Operating Systems Review 44, 2 (2010),
35–40.

[17] SAUREZ, E., BALASUBRAMANIAN, B.,
SCHLICHTING, R., TSCHAEN, B., HUANG, Z.,
NARAYANAN, S. P., AND RAMACHANDRAN, U.
METRIC: A Middleware for Entry Transactional
Database Clustering at the Edge. In Proceedings
of the 3rd Workshop On Middleware for Edge
Clouds & Cloudlets (December 2018).

[18] SHUTE, J., VINGRALEK, R., SAMWEL, B.,
HANDY, B., WHIPKEY, C., ROLLINS, E.,
OANCEA, M., LITTLEFIELD, K., MENESTRINA,
D., ELLNER, S., ET AL. F1: A distributed sql
database that scales. Proceedings of the VLDB
Endowment 6, 11 (2013), 1068–1079.

[19] VERMA, A., PEDROSA, L., KORUPOLU, M., OP-
PENHEIMER, D., TUNE, E., AND WILKES, J.
Large-scale cluster management at google with
borg. In Proceedings of the Tenth European Con-
ference on Computer Systems (2015), ACM, p. 18.


