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Abstract
Resource management for geo-distributed infrastructures is
challenging for two key reasons: edge resources are scarce
and heterogeneous, and situation awareness applications are
highly dynamic due to client mobility and workload surges.
State of the art schedulers that work well in a datacenter set-
ting have limitations, owing to their centralized nature, both
from the point of performance and features to match the re-
quirements of such applications. We present OneEdge, a hy-
brid control plane that enables autonomous decision-making
at the edge sites for localized, rapid application deployment.
The edge sites collaborate with a logically centralized con-
troller to facilitate coordinated multi-site scheduling and
dynamic reconfiguration to deal with mobility, churn, and
load spikes at the edge sites.
OneEdge includes features for respecting end-to-end (E2E)
service level objectives (SLOs) of the applications and spa-
tial awareness of the clients’ locations in its scheduling de-
cisions. A hierarchical monitoring component continually
gathers statistics to drive reconfigurations when an applica-
tion’s SLOs are likely to be violated. The first contribution of
OneEdge is its rich feature set that matches the requirements
of situation awareness applications. The second contribu-
tion is the novel distributed state management that allows
autonomous decision-making at the edge sites for localized
resource allocations, in parallel with decision-making at the
central controller for multi-site deployments. We evaluate
OneEdge with a mix of applications using a multi-region
Azure deployment. We show that OneEdge is able to de-
liver on the spatial affinity SLO for the applications. We also
show that, compared to a centralized control plane, OneEdge
reduces deployment latency by 66% for standalone applica-
tions, without compromising on E2E latency SLO violations
compared to centralized.
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1 Introduction
Situation awareness applications such as autonomous vehi-
cles [11], drone navigation [12], AR-assisted driving [17],
large-scale video analytics [1], and camera networks for
safety and surveillance [33] continuously sense the envi-
ronment and respond in real-time. In addition to being in-
herently geo-distributed, such applications are also both

bandwidth intensive (e.g., camera streams) and latency sensi-
tive (e.g., tight bound between sensing and actuation). Edge
computing is a promising approach for meeting the resource
needs of such applications, offering geo-distributed deploy-
ment of computational resources close to the sensor sources.
On the infrastructure front, the edge may encompass a range
of heterogeneous computational resources, and we expect
that the primary drivers will be micro-datacenters (𝜇DC)
with server-grade machines, a few racks per site, maintained
by telecommunication providers and ISPs [23]. The combi-
nation of Cloud datacenters and such 𝜇DCs forms a compu-
tational continuum, as shown in Fig. 1.

Figure 1: Edge-Cloud continuum: Micro-datacenters (𝜇DCs)
may be interconnected via dedicated fiber-optic links [27].

On the applications front, we identify two distinct appli-
cation classes: coordinated and standalone. Coordinated ap-
plications feature multiple clients that share application
state, hence different application instances require coloca-
tion and coordination. Examples of coordinated applications
include collaborative assisted driving and geo-distributed
multiplayer games (e.g., Pokemon Go [31]). In contrast, stan-
dalone applications are limited to single-user instances . Ex-
amples include virtual reality and single-drone control.
Beyond their bandwidth and latency constraints, situation
awareness applications pose unique requirements that distin-
guish them from Cloud-native applications. These require-
ments are: R1: Autonomous control—for single-site deploy-
ment of latency-sensitive standalone applications (§3.1.2),
R2: Coordinated control—for multi-site deployment of coordi-
nated applications (§3.1.1), R3: Spatial affinity—to support
applications’ location sensitivity, R4: E2E latency SLO—to
support the necessary end-to-end latency SLO guarantees
needed, and R5: Dynamic resource reallocation—needed for
re-deployment of an application due to mobility and/or fail-
ures/resource scarcity at an edge site.
State of the art control planes like Kubernetes and its vari-
ants (e.g., KubeEdge) do not meet these requirements. The
primary reason is that such control planes were designed for
throughput-oriented applications running in the Cloud. For

1

https://doi.org/XX.YYYY


Conference’17, July 2017, Washington, DC, USA

such applications, except for dynamic resource reallocation
support (R5), the other requirements are either not appli-
cable or easily met in a datacenter environment. Adapting
the state-of-the-art to meet these requirements is non-trivial.
For example, Kubernetes uses tag-based matching to select
nodes for launching applications and does not support fine-
grained latency-sensitive or location-sensitive application
placement. Such requirements would have to be enshrined
in application-specific controllers (Fig. 2a) running atop Ku-
bernetes, pushing the burden on to the application developer
to implement the required functionality independently.
OneEdge is an agile control plane designed to meet these
requirements. Specifically, it allows edge sites to make au-
tonomous scheduling decisions without central coordination
for standalone applications. At the same time, to cater to
the needs of coordinated applications which rely on global
knowledge of application instances, OneEdge has a central-
ized component. For rapid autonomous control plane deci-
sions without central coordination, the authoritative state
is kept locally at each site. The central controller maintains
an eventually consistent [29] aggregate state to make deploy-
ment decisions for multi-site coordinated applications. Such
decisions are optimistic owing to the eventually consistent
nature of the aggregate state and has to be ratified by the af-
fected edge sites. OneEdge employs an enhanced two-phase
commit protocol to ratify the deployment decisions with the
affected edge sites. OneEdge exposes the right interfaces to
the app developer to facilitate latency and location sensitive
scheduling of the application components. The monitoring
component of OneEdge ensures that the E2E latency SLO of
an application is met, triggering migration of a client (e.g.,
a connected vehicle) to a spatially appropriate application
instance commensurate with the client mobility.
We make the following contributions:
• A novel hybrid control plane architecture for geo-distri-
buted infrastructures that combines autonomous decision-
making at edge sites to minimize deployment latency
for standalone applications, with centralized decision-
making for scheduling coordinated applications.

• Efficient optimistic concurrency control with an enhanced
two-phase commit protocol that reconciles the central
controller’s eventually consistent state with the authori-
tative state that is distributed across edge sites.

• Intuitive interfaces for application developers to specify
spatio-temporal constraints for applications, which are
integrated in the control plane’s scheduling decisions.

• The design and implementation of OneEdge, and an eval-
uation showcasing how its objectives are met.

Paper outline: §2 discusses the shortcomings of state-of-the-
art control plane designs for situation awareness applications.
§3 introduces a model for situation awareness applications
and two concrete use cases. §4 presents OneEdge’s key design

principles and §5 its architecture. §6 evaluates OneEdge, us-
ing microbenchmarks and a mock-up of situation-awareness
applications. Finally, we present concluding remarks and
avenues for future work in §7.

2 Limitations of Existing Control Planes
Cloud Resource Management. There is a large body of
work in schedulers designed specifically for Cloud datacen-
ters, ranging frommonolithic [3, 28], partitioned [2, 5, 13, 30]
to shared-state [6, 7, 15, 26] architectures. These systems are
designed for the specific characteristics of datacenter envi-
ronments: largely homogeneous computational resources
with strong network connectivity between the control plane
and the managed resources. Furthermore, they rely on a
shared authoritative state (potentially replicated for redun-
dancy and fault tolerance) to coordinate resource scheduling,
which is updated by one or more distributed schedulers [26].
A shared state management approach is not scalable for edge-
centric schedulers, as they need to reach the Cloud-resident
shared state over a high-latency and unreliable network for
every control decision. Disconnections and network parti-
tionsmake it difficult, if not impossible, to achieve the desired
attributes of autonomous decision-making and migrations.
Geo-DistributedResourceManagement.Alternative con-
trol planes for edge infrastructure such as KubeEdge [32]
and Federated Kubernetes [18], inherit the centralized archi-
tecture of Kubernetes wherein all control plane decisions are
driven by a central controller.
To underscore the deployment overhead of the current state-
of-the-art for situation-awareness applications, we conduct
the following experiment with Kubernetes. Fig. 2a shows
the experimental set up: a client of a situation-awareness
application, a desired edge site for launching the application
for the client, and Kubernetes scheduler in the Cloud. The
color-coded arrows show the relative latencies for each of
the control flow actions. The control flow for launching the
application at the edge site depicted in Fig. 2a is as follows. 1
and 2 : The application’s client communicates a site-specific
deployment request to a dedicated application controller in
the Cloud hosting the Kubernetes scheduler. 3 : Kubernetes
makes the scheduling decision and enters it into the etcd
database. 4 to 6 : The edge site picks up the scheduling
request, launches the needed application containers, and
informs Kubernetes. 7 and 8 : The application controller
is apprised that the application is ready to be launched and
notifies the client, which can now start interacting with the
deployed application on the edge site.
To showcase the best case deployment latency (i.e., no queu-
ing effects due to other requests pending at the scheduler)
for Kubernetes for different controlled settings of WAN la-
tency, we emulate all the entities (Client, Cloud, and Edge
Site) involved in the control flow shown in Fig. 2a as individ-
ual VMs inside an instance of an Azure region [20]. Every
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(a)Workflow for app deployment on an edge site using Kubernetes.

(b) Latency breakdown with
container cold start.

(c) Latency breakdown with
pre-warmed containers.

Figure 2: Experimental results with Kubernetes.

WAN hop shown in Fig. 2a incurs a set latency controlled
through the Linux tc [19] utility. Fig. 2b and Fig. 2c show
the mean end-to-end deployment latency for different set-
tings of WAN latency. Fig. 2b is for deploying containers
from scratch (cold start), while Fig. 2c is for pre-warmed con-
tainers. The bar graphs show the breakdown of the latency
into individual components. As can be seen from Fig. 2b, the
container startup time dominates the end-to-end application
deployment latency. However, significant ongoing research
efforts are focused on addressing the high cost of cold starts
by keeping pools of pre-warmed containers [22] to avoid
this overhead. Fig. 2c demonstrates that once the cold start
effect is mitigated (using pre-warmed containers), the over-
head of WAN traversal becomes the primary deployment
latency determinant. For example, with pre-warmed contain-
ers and a 40ms one-way WAN latency, the WAN overhead
accounts for 49% of the deployment latency. We observe a
similar trend with KubeEdge (but with higher latency due
to additional book-keeping overheads), since it has a similar
deployment workflow.
Ensuring low-latency control plane actions is important for
situation awareness applications both to get the application
started initially, as well as for reconfiguration decisions in
response to client mobility or resource scarcity. If not exe-
cuted quickly, control plane actions can result in E2E SLO
violations for the applications. Besides the latency concern
of placing multiple WAN traversals on the critical path of
application deployments, state-of-the-art schedulers also do
not natively cater to the requirements of situation aware-
ness applications (§1), specifically meeting their E2E latency

Type of Scheduler Requirement
R1 R2 R3 R4 R5

Cluster Monolithic (e.g., Kubernetes) N* N* N* N Y
Cluster Partitioned (e.g., Mesos) N* N N* N Y
Cluster Shared-state (e.g., Omega) N* N N* N Y

Geo-dist. Centralized (e.g., KubeEdge) N* N N N Y
Geo-dist. Decentralized (e.g., Foglets) Y N* Y Y Y
Geo-distributed Hybrid (OneEdge) Y Y Y Y Y

Table 1: Comparison of schedulers with respect to the require-
ments of situation awareness applications. The requirements
are R1: Autonomous control, R2: Coordinated control,
R3: Spatial affinity, R4: E2E latency SLO, R5: Dynamic
resource reallocation. N = requirement not met; N* = re-
quirement incompatible with system’s architecture.

SLOs, and respecting spatial affinity considerations. Table 1
summarizes the ability (or lack thereof) of state-of-the-art
control planes for meeting the requirements of situation
awareness applications.
The application controller in the Cloud (Fig. 2a) acts as a
layer above Kubernetes to instruct the scheduler on its de-
sired placement decisions. It is a burden on the developer to
build an application controller for each situation awareness
application. This begs the question, could we build a generic
abstraction layer on top of Kubernetes that caters to the re-
quirements (Table 1) as a viable solution? Unfortunately, as
noted above, existing mechanisms in state-of-the-art sched-
ulers such as Kubernetes do not inherently cater to such
requirements. Therefore, we take a clean-slate approach to
systematically address all these requirements with OneEdge.

3 Situation Awareness Applications
Situation awareness applications convert geo-distributed
24×7 sensed data to actionable knowledge at computational
perception speeds and are highly latency-sensitive. This sec-
tion formalizes a general application model for situation
awareness applications and highlights two concrete use cases.

3.1 Application Model
Situation awareness applications can bemodeled as a pipeline
of components (e.g., detection, filtering, and sub-regional
view, as shown in Fig. 3). The client (e.g., a vehicle) feeds
input data into a pipeline. Each component processes data
generated by the upstream component and generates output
data to be consumed by the downstream one. Additionally,
actionable information generated by a component can be
communicated back to the client directly.
Representing the application as a pipeline gives the control
plane the flexibility to split application components across
multiple servers within a 𝜇DC or even across 𝜇DCs, so long
as the application’s SLOs are not violated. A pipeline model
allows sharing key stages across clients to enable cross-client
coordination (e.g., sub-regional and regional views in Fig. 3).
We describe a representative example of a coordinated and a
standalone application.
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Figure 3: An exemplar of situation awareness application
– Connected Vehicles. Cars in the same spatial locale have
their individual views fused by the sub-region view; Region
view fuses sub-region views of adjacent spatial locales.

3.1.1 Coordinated Application: Connected Vehicles
We consider a connected vehicle scenario (Fig. 3) modeled as
a pipeline. Each vehicle (i.e., client) uses a lidar sensor and
on-board processing to generate a list of objects it can see in
its immediate field of view. The individual views from mul-
tiple vehicles in close spatial proximity of one another are
aggregated to create a composite view (sub-regional view),
which helps reveal objects missed by the individual views
due to occlusions. The fused composite view is made avail-
able to the vehicles in the same spatial proximity so that
each vehicle can take better decisions for lane control and
collision avoidance. Different disjoint subsets of vehicles in
different spatial locales have their views fused together as in-
dependent sub-regional views. The sub-regional views may
be aggregated at the next pipeline stage to create a regional
view to further improve vehicular safety and traffic analyses.
The mobility of the vehicles necessitates dynamic, constantly
evolving associations of vehicles with spatial sub-regions.
3.1.2 Standalone Application: Drone Navigation
Control of a single autonomous drone is an example of a
standalone application. The application model is much sim-
pler, as it does not share any application component or state
across clients. As there are no sharing requirements, the best
placement for standalone apps, from a network latency and
bandwidth perspective, is on the geographically closest edge
site, both for placement and mobility-triggered migration.

3.2 Application-level SLOs
For situation-awareness applications, SLOs are best defined
in terms of tolerable latencies. For example, with reference
to Fig. 3, the “Sub-Regional View” stage has a more stringent
latency requirement compared to the “Regional View” stage.
The tolerable latency for a particular stage is the composite
of all the latencies leading up to that stage, including net-
work latency, queuing, and computation times. The cost of
network communication also depends on the data exchanged
between the stages: e.g., the “Filter” stage receives raw data
from on-board sensors and needs a high-bandwidth connec-
tion to the raw data streams; while the “Regional View” stage,

which aggregates metadata from sub-regions, has a much
smaller bandwidth requirement.
Since an application is expressed as a pipeline of components,
it is convenient for its developer to specify the SLOs in terms
of two parameters per pipeline stage: (a) acceptable staleness,
and (b) rate of data production. Both parameters depend on
the application’s semantics.
Fig. 3 shows the tolerable staleness for stage 𝑖 using the no-
tation 𝑆𝑖 . 𝑆𝑖 denotes the worst-case acceptable composite
latency at the input of stage 𝑖 . 𝐷𝑖−𝑗 refers to the produc-
tion rate of data items communicated between stages—e.g.,
the data rate between the “Filter” and “Sub-Regional View”
stages 𝐷1−2 is the objects detected per unit time (bytes/sec).
Presenting the SLOs in terms of data staleness and data
rates gives flexibility to the control plane in placement deci-
sions, taking into account the 𝜇DCs’ resource capacities to
accommodate each stage’s CPU and memory needs, and the
bandwidth required for communication between the stages.
Concretely, the E2E latency SLO of an application is equal
to

∑𝑛
𝑖=1 𝑆𝑖 , where n is the number of stages in the pipeline.

Another quality of interest for coordinated applications is
spatial affinity, which we define as the application’s intent
to share state among a subset of clients based on geographical
proximity, i.e., Area of Interest (AoI). Each application may
have its logic for defining an AoI for its clients. For example,
in the connected vehicles application (Fig. 3), an AoI may be
the area covering a busy intersection. Spatial affinity is an
application SLO that the scheduler will use in its decisions.
To quantify how well an application deployment chosen by
a scheduler matches the application’s spatial affinity SLO,
we propose a new metric, namely, spatial alignment. With
respect to Fig. 3, if there are 𝑛 vehicles in a given AoI (i.e., the
AoI’s current spatial affinity is 𝑛), the metric should quantify
the percentage of vehicles (i.e., a fraction of 𝑛) whose indi-
vidual views are fused by the sub-regional view component.
Thus, we define spatial alignment for an AoI as follows:
𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 =

# 𝑜 𝑓 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 𝑖𝑛 𝐴𝑜𝐼 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒

# 𝑜 𝑓 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 𝑖𝑛 𝐴𝑜𝐼
.

A perfect scheduler maps all clients with the same spatial
affinity to the same pipeline, i.e., spatial alignment = 1.
The scheduler’s operation uses both metrics: E2E latency
SLO and spatial affinity SLO, and aims to maximize spatial
alignment and minimize E2E latency SLO violations.

4 Challenges and Key Design Principles
In this section, we elaborate on the challenges associated
with the five key requirements for control planes manag-
ing situation awareness applications on geo-distributed in-
frastructures. We then introduce key control plane design
principles that allow OneEdge to overcome these challenges.
Challenge 1: Situation awareness applications have inher-
ently strong topological semantics. First, strict latency SLOs

4



OneEdge: An Efficient Control Plane for Geo-Distributed Infrastructures Conference’17, July 2017, Washington, DC, USA

are tightly associated with an application’s deployment lo-
cation relative to each client’s physical location, as network
traversals account for a significant fraction of each serviced
request’s E2E latency. Second, spatially proximal clients of
the same coordinated application should be digitally colo-
cated to enable essential application state sharing. While
topological information should be integral to scheduling
decisions, that is not the case for existing control planes.
Challenge 2: Standalone and coordinated applications im-
pose conflicting requirements on the control plane. Autono-
mous deployment necessitates distributed state and inde-
pendent decision-making based on locally available state,
while the need for balanced load on widely fragmented re-
sources and for inter-site client coordination necessitates an
orchestrating entity with global state visibility.
Challenge 3: As application pipelines (Fig. 3) may span
multiple edge sites, site-specific performance monitoring
alone is insufficient to provide E2E latency guarantees.
To overcome these challenges, OneEdge’s architecture builds
on three main design principles:
Principle 1: Client geolocation and application latency re-
quirements are exposed as first-class citizens to the control
plane. This information is contained in each client’s applica-
tion deployment request (i.e., client’s GPS location), and the
control plane’s state bookkeeping is geospatially organized.
Principle 2: A two-level hybrid structure to reconcile the
conflicting need for both distributed and centralized state.
The hybrid control plane architecture comprises an autono-
mous controller per 𝜇DC and an overarching centralized
controller playing complementary roles to meet the needs of
both standalone and coordinated applications. Autonomous
per-site controllers maintain the site’s authoritative state and
allow instant deployment of standalone applications without
interacting with the centralized controller. The centralized
controller maintains an eventually consistent view of the
global state, which is leveraged for cross-site application
pipeline deployment and for off-the-critical-path resource
reallocation decisions for load balancing purposes.
Principle 3: Application deployment decisions should be
primarily SLO-driven rather than just resource-driven. Pre-
serving application E2E latency guarantees should be a re-
sponsibility of the control plane. Thus, the control plane
should not only make placements based on performance
targets, but also enforce continuous compliance via hierar-
chical monitoring. Per-application latency metrics should
not only be locally collected at each per-site controller, but
also periodically aggregated at the centralized controller, to
assess E2E SLO compliance. Upon SLO violation detection,
the control plane reassesses resource provisioning decisions
and/or migrates applications depending on the source of SLO
violation (i.e., due to resource scarcity or client mobility).

5 OneEdge System Architecture
We now present the architecture of OneEdge, a hybrid con-
trol plane that embodies the requirements outlined in Sec-
tions 1 and 2 and builds on the design principles in §4.

5.1 Overview
Fig. 4 depicts OneEdge’s high-level architecture, compris-
ing two top-level entities: site and controller. A site is a
self-managed instance of a geo-distributed infrastructure
(e.g., 𝜇DC, Cloud datacenter) that contains computational re-
sources and cooperates with the controller in control-plane
decision making. The controller is a logically centralized
entity that makes system-wide deployment decisions for ap-
plication pipelines spanning more than a single edge site,
or to adjust deployment decisions that were autonomously
made at individual sites, for load balancing reasons.
Client requests to launch an application on the edge infras-
tructure are always directed to the client’s geographically
proximal site by using a standard discovery service [21]. The
application is tagged as “standalone” or “coordinated” by the
developer. The site agent determines whether to handle it
locally or forward it to the central controller. Standalone ap-
plications are handled locally, avoiding WAN traversals and
centralized coordination, unless resource constraints pre-
vent local deployment. Deployment requests for coordinated
applications are always forwarded to the central controller.
The central controller monitors and orchestrates the aggre-
gated infrastructure’s state; it plays both a proactive and a
reactive role, on and off an application deployment’s criti-
cal path, respectively. For coordinated applications, it deter-
mines the matching of each client to application instances,
and the placement of application pipeline components to
specific sites. In the background, it also monitors each site’s
resource usage and each application’s delivered performance
compared to its SLO, to drive resource re-allocation and ap-
plication migration decisions.

5.2 Edge Site Components and Operation
Each site comprises four components (Fig. 4, right): the site
agent, the monitoring subsystem, the container agent, and
the container runtime (which relies on Docker [8]). The site
agent is the site’s local resource manager and coordinator
with the central controller. It receives deployment requests
from the clients within the site’s region and from the central
controller. Each deployed application component is associ-
ated with a container agent. Each application’s container
agent handles any inter-site communication between appli-
cation pipeline stages spanning multiple sites. Finally, the
monitoring subsystem continually gathers metrics about the
site’s resource usage and metrics pertaining to the SLOs of
the application components hosted on that site. OneEdge’s
monitoring subsystem is further discussed in §5.3.2.
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Figure 4: OneEdge’s System Architecture. A central controller (left blow-up) coordinates with all the edge sites (right blow-up).

Deflection. In general, a site forwards new deployment re-
quests for coordinated applications to the central controller
and autonomously handles the local deployment of stan-
dalone application requests. When a site’s resources are
highly utilized, even standalone application requests can-
not be locally served and have to be deflected to the central
controller. The central controller will then deploy the ap-
plication on a nearby edge site that can meet the applica-
tion’s SLOs. A site’s deflection policy is controlled by two
parameters: threshold and percentage. When the resource
commitment at a site exceeds a specified threshold, up to the
indicated percentage of new client requests will be deflected
to the centralized controller for alternative placement. A
fully saturated edge site deflects all new requests.

5.3 Controller Components and Operation
OneEdge’s central controller (Fig. 4, left) plays two crucial
roles. First, it determines the placement of cross-site applica-
tion pipelines, a need typically associated with coordinated
applications. Second, it continuously monitors the entire
infrastructure for significant load imbalances and E2E appli-
cation SLO violations. When such incidents are detected, the
controller will make reallocation and/or migration decisions
to ameliorate the problem. The two roles are fulfilled by the
controller’s proactive and reactive policies, respectively.
5.3.1 Proactive Policies
Fig. 4 (left) shows the central controller’s workflow for han-
dling deployment requests received from site agents (mainly
for coordinated, but also for standalone applications due to de-
flection). Additionally, the monitoring subsystem may also
insert reconfiguration requests into the request queue to
avoid potential SLO violations detected through the monitor-
ing statistics (see §5.3.2). The resource scheduler processes the
requests in order, making placement decision to match each
request’s requirements: (i) type—standalone or coordinated;
(ii) E2E latency SLO—inferred from the application pipeline
to be launched similar to Fig. 3; and (iii) spatial affinity—
inferred from the request-initiating client’s GPS location.
We use the metrics defined in §3.2 to quantify E2E latency
and spatial alignment in the proactive scheduling decisions.
To facilitate resource sharing while respecting application
SLOs, OneEdge uses offline profiling to generate a resource

requirement profile (RRP), for each application component
that may be shared across client requests. The RRP specifies
the resource commitment needed for each stage of an appli-
cation pipeline as a function of the number of concurrent
clients. RRP is used by both the site agent and the central
controller’s resource scheduler to make allocation decisions
and is therefore populated in both sets of components.
The placement module in the resource scheduler selects the
site(s) to launch the application pipeline for the client re-
quest. In making this placement decision, resource scheduler
consults the aggregate state which is the composite of the re-
source commitments of all the 𝜇DCs. Due to the autonomous
decision making at the 𝜇DCs, the aggregate state may not
be up to date. Keeping the aggregate state eventually consis-
tent is a principle (§4) we adopted to give local autonomy
for making rapid deployment for latency-critical standalone
applications. Placement decisions are made optimistically,
under the assumption that aggregate state is up to date. Our
approach follows the “think globally, act locally” conven-
tional wisdom in distributed systems.
The role of the transaction manager in the central controller
workflow is to launch the placement decision as an atomic
2-phase commit (2PC) transaction, because it may affect
multiple sites in the case of coordinated applications. At the
end of the first phase, the transaction manager will know if
the placement decision has been accepted by all the affected
sites. In this case, the second phase of the transaction is to
confirm the placement decision to the affected 𝜇DCs. If any
of the affected sites reject the decision in the first phase, the
transaction manager sends an abort message in the second
phase to all the affected sites, and updates the aggregate
state using the authoritative state information received from
the sites. The 𝜇DCs update their internal authoritative states
upon receiving the abort message. After an abort, the request
is re-enqueued in the request queue with a higher priority.
Since the resource scheduler updates the aggregate state af-
ter completing every request and uses the new aggregate
state to process the next request, an invariant that should be
maintained by the transaction manager is that the transac-
tions should appear to be applied on the sites serially. We
discuss optimizations to preserve this requirement without
compromising performance in §5.3.3.
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5.3.2 Reactive Policies
While the central controller’s proactive policies place appli-
cations so that E2E SLOs are met and resource utilization
across the infrastructure is balanced, continuous adaptations
may be needed for various reasons. First, autonomous de-
ployments of standalone applications at edge sites can cause
utilization imbalance and increased resource pressure at indi-
vidual edge sites. Second, client mobility can cause frequent
load shifts between edge sites serving the same application.
Such events can lead to application SLO violations, thus the
controller needs to reevaluate its resource allocation and
application placement decisions continuously. At the heart
of these reevaluations lies OneEdge’s monitoring subsystem.
Hierarchical SLOMonitoring. Each site has its ownmoni-
toring subsystem, which periodically aggregates each locally
running application’s metrics of interest (e.g., per-stage ex-
ecution time). For standalone applications, the aggregated
statistics are conveyed to the site agent. If the site agent
detects application SLO violations, it attempts to alleviate
the issue locally by allocating additional resources to the
suffering application’s containers. If that is not possible (e.g.,
no local resource availability or client mobility), the agent
notifies the central controller, taking actions at a global scale.
For coordinated applications spanning multiple edge sites,
per-site statistics have to be combined to determine potential
SLO violations. The site agent forwards the locally aggre-
gated statistics (e.g., execution times, data production rates,
queuing between stages) to a preselected leader site, which
hosts some of the application pipeline’s stages. The leader
site summarizes the collected statistics and sends a digest to
the central controller’s monitoring manager. The monitoring
manager uses this information to determine if an application
reconfiguration (e.g., increase resource allocation at each
involved site or migrate application stages) is necessary; if
so, it generates a new request in the request queue.
Dynamic Resource Reallocation. The first reaction to de-
tected SLO violations is an incremental resource allocation
increase for the container(s) hosting the target application
pipeline’s stages. The controller uses the RRP (§5.3.1) as an
application-specific guide to define the extra resources that
need to be allocated to avoid the SLO violation, as follows.
The allocation for the affected application is increased by
𝜆 dummy clients, where 𝜆 is a configuration parameter (a
small positive integer). Suppose 𝐶 is the number of clients
currently served by the application pipeline. In that case, the
allocation is increased to that needed for 𝐶 + 𝜆, using RRP
to identify the required resources corresponding to the new
number of clients. Incremental allocation provides the agility
necessary to react quickly to surges in resource needs.
The second reaction knob is the migration of the applica-
tion’s pipeline stages from the site experiencing the load
spike that caused the SLO violation to other sites. The central

controller uses three inputs to guide this action: (a) knowl-
edge of spatially proximal sites to the affected site, (b) the
resource commitments at these proximal sites (available from
aggregate state) to ensure load balance, and (c) the require-
ments of the application components to be migrated.
5.3.3 Performance Optimizations
Enhanced 2PC. The central controller uses a 2PC protocol
to deploy coordinated applications spanning multiple sites.
The traditional semantics of 2PC would abort a transaction
𝑇𝑖 if there is a mismatch between the controller’s aggregate—
but often stale—state when𝑇𝑖 was generated by the resource
scheduler and the site’s authoritative state when 𝑇𝑖 is pro-
cessed at the site. To avoid unnecessary aborts, OneEdge
leverages the observation that a transaction need not abort as
long as the sum of transaction’s requested resources and cur-
rently reserved resources does not exceed the site’s resource
capacity (Omega [26] exploits a similar idea in a datacenter
setting). When such conditions are met, instead of aborting
the transaction, the site agent updates the authoritative state
with the transaction’s allocation request during phase one of
the protocol, and informs the central controller of the actual
site resource commitments to update the aggregate state.
A second optimization to conventional 2PC reduces the la-
tency on the critical path from twoWAN traversals to one. In
the first phase, a site replying affirmatively to a deployment
request also optimistically allocates the requested resources.
If the controller receives affirmative responses from all af-
fected sites, it notifies the client in parallel with the execution
of the second phase. Thus, the WAN latency for the second
phase can be overlapped, as the site can start receiving ac-
tual data plane actions from the client ahead of the second
phase’s completion. If the transaction is aborted, the second
phase frees each site’s optimistically committed resources.
Transaction Pipelining. It is reasonable to expect geo-
spatial diversity across successive client requests arriving
at the central controller. Successive transactions affecting
disjoint sets of sites are independent; so, the transaction man-
ager could execute them in parallel. However, for the correct
operation of the resource scheduler, transactions should ap-
pear to be executed serially by the transaction manager. One
way of exploiting parallelism and preserving this ordering
invariant is to enforce ordering at the destination sites.
The following conditions should be met at the destination
site to ensure that transaction order is preserved while exe-
cuting transactions (which may or may not be independent
of each other) in parallel: (1) successive transactions that
affect the same site should be processed by the site in the
scheduler’s order of generation, and (2) a transaction abort
should correctly restore the authoritative state at the site
before that site processes subsequent transactions.
We denote 𝐷 (𝑇𝑖 ) to represent the dependency set of transac-
tions 𝑇𝑗 for which 𝑇𝑗 → 𝑇𝑖 . Similarly we denote 𝐴𝐷 (𝑇𝑗 ) to

7



Conference’17, July 2017, Washington, DC, USA

denote anti-dependency, i.e., the set of transactions 𝑇𝑖 such
that 𝑇𝑗 → 𝑇𝑖 . A transaction 𝑇𝑖 is eligible to be processed at
each affected site so long as all the transactions in its depen-
dency set 𝐷 (𝑇𝑖 ) have been completed. Every transaction 𝑇𝑖
sent to a site contains 𝐷 (𝑇𝑖 ) and 𝐴𝐷 (𝑇𝑖 ).
The site will not process𝑇𝑖 unless it has already received and
processed 𝑇𝑗 . The completion of 𝑇𝑗 will trigger the deletion
of all the incoming edges from the transactions in 𝐴𝐷 (𝑇𝑗 ),
possibly allowing some of them to become eligible for pro-
cessing. If 𝑇𝑗 is aborted, the aggregate state is rolled-back
accordingly. Further, this abort will trigger a cascading roll-
back of the pending transactions that transitively depend on
𝑇𝑗 (i.e., starting from the members of𝐴𝐷 (𝑇𝑗 )). These aborted
transactions will result in a re-submission of the associated
control plane requests to the request queue. However, aborts
are uncommon, because, per our Enhanced 2PC protocol, they
only occur if the site’s resources have been depleted (and
not due to a mere mismatch between the central controller’s
and the site’s state of resource availability).
Additionally, to prevent queue build up at the destination
sites, we use a windowing technique, which limits the maxi-
mum number of outstanding transactions that can be sent to
a given site. The limit ensures that a site is not overloaded.
5.3.4 Fault Tolerance and Scaling up
Fault tolerance for the centralized controller is provided in
a standard manner. We assume that the central controller
runs in a robust environment (e.g., Cloud datacenter). While
the server that hosts the central controller may fail, it is
improbable for the entire datacenter to fail. Therefore, the
approach to fault tolerance is to have a secondary instance
of the central controller running in tandem with the primary
in another server. All the pertinent information involved
in the primary workflow (§5.3.1) is replicated, including in-
flight transactions. On a primary failure, the secondary takes
over and rolls back to an aggregate state comprising only
complete transactions, by issuing aborts for all the in-flight
transactions and resubmitting them as new requests.
Given our scope, we choose a simple design for the central
scheduler. In a full-scale scenario, the central scheduler can
still become a bottleneck, calling for a more sophisticated de-
sign that allows scaling its performance. Well-known Cloud
techniques [26] can be directly applied to address such chal-
lenges; this is part of our future work (§7).

6 Performance Evaluation
OneEdge is implemented in C++11 on Ubuntu 18.04. Each
application component is dynamically linked in to a base
OneEdge container image built using the Docker framework.
We use MongoDB to store the transaction manager’s aggre-
gate state, and ZMQ for communication among the system’s
distributed components. The evaluations we report in this
section aim to verify the following hypotheses:

1. Transaction pipelining and enhanced 2PC (§5.3.3) are
effective in improving OneEdge’s performance (§6.2.2).

2. OneEdge’s hybrid nature delivers lower-latency place-
ment decisions compared to a centralized control plane
for standalone requests (§6.2.3).

3. OneEdge strikes a good compromise between deploy-
ment latency for standalone requests and load balance
across latency-equivalent edge sites (§6.2.4).

4. OneEdge is similar to a centralized control plane at meet-
ing application SLOs, while achieving significantly lower
deployment latency for standalone applications (§6.3).

We derive a centralized control plane baseline by configuring
OneEdge’s site agents to deflect all incoming requests at
edge sites to the central controller. The resulting centralized
baseline is functionally similar to KubeEdge [32], enhanced
with the pipelined control plane actions described in §5.3.3
and satisfying E2E latency constraints of applications.

6.1 Experimental Platform
Azure Regions. For the microbenchmarks and end-to-end
application evaluation, we emulate a geo-distributed edge in-
frastructure with sites in multiple metropolitan areas. To do
so, we use resources in five Azure regions: WestUS, WestUS
2, CentralUS, South Central, and East US. We host the central
controller on the East US region and use each of the remain-
ing regions to emulate a different metropolitan area. In each
region we create multiple VMs, and each VM represents a
𝜇DC (i.e., an edge site) located within that metropolitan area.
We used “Standard D16s_v4” VMs, each featuring 16 vcpus
and 64 GiB memory. Emulated clients are tied to a specific
metropolitan area and are hosted in the corresponding Azure
region. Clients exhibit mobility only inside their associated
metropolitan area, but not across metropolitan areas.

6.2 Microbenchmarks
In this section, we stress-test OneEdge by executing all the
control plane actions without any application running or any
actual resource allocations. To stress-test at scale, we emulate
𝜇DCs and parameterize the container runtime within each
𝜇DC. Further, we synthesize the client workload presented
to OneEdge to drive the controlled experiments.
6.2.1 Experimental Setup
Control-plane Parameters. OneEdge consists of one Cen-
tral Controller, multiple 𝜇DCs, and multiple Clients (Fig. 4).
We use a simplified placement logic to stress test our per-
formance optimizations. The controller’s resource scheduler
uses two common heuristics: round-robin placement across
𝜇DCs (in the same metropolis) to improve allocation balance,
and collocation of an application’s pipeline stages on the
same 𝜇DC, if capacity allows, to improve application E2E
latency. We set resource scheduling latency to 2 ms, match-
ing the best-case performance of our resource scheduler
implementation used in the end-to-end study (§6.3).
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Parameter Value
Container Startup/Update 583 ms/25 ms
One-way WAN latency 20 ms

Window Size 100
Resource Scheduling Latency 2 ms

Modeled per-𝜇DC resource capacity 4096 cores, 8 TB memory
Per-request resource allocation 1 core, 512 MB memory
C-App Exponential 𝛽 range 10–100 s

C-App Poisson 𝜆 range (per 𝜇DC) 1–8 𝑠−1
S-App Exponential 𝛽 range 100–300 s

S-App Poisson 𝜆 range (per 𝜇DC) 2–25 𝑠−1

Table 2: Summary of parameters for microbenchmarks.

Emulated 𝜇DCs. In the emulation, although each 𝜇DC is
represented by a single VM, its resource capacity is mod-
eled as comprising 32 servers with 128 cores and 256GB of
DRAM per server. Note that the modeled per-𝜇DC capacity is
only for book-keeping purposes during the microbenchmark
experiments—resources are not actually allocated.
Container Runtime. To parameterize the times associated
with the management of an application pipeline on a 𝜇DC,
we measure the Docker container runtime used in the site
agent’s implementation (Fig. 4). The measured mean con-
tainer deployment time (consisting of a simple application
and its container agent library) is 583ms, with a std. devi-
ation of 143ms. The measured mean time for updating an
already deployed container’s resource allocation (CPU-set
and memory limit [9]), is 25ms, with a std. deviation of 4ms.
We use these results to parameterize the 𝜇DC’s reaction time
upon every deployment request in the microbenchmarks.
WorkloadCharacterization. Wegenerate a synthetic work-
load with a mix of deployment requests for coordinated and
standalone applications (abbreviated as C-App and S-App,
respectively). We construct the synthetic workload by study-
ing the cellular mobility of cars in San Francisco (SF), using
the SF cabs dataset [24] and locations of cellular towers in
SF [4]. We use k-means to group the cellular towers into
32 clusters and select each cluster’s resulting centroid as a
𝜇DC’s location. Clients send allocation requests to the geo-
graphically closest 𝜇DC, hence client-𝜇DC communication
does not incur WAN latency. As each mobile client’s clos-
est 𝜇DC changes over time, C-App clients trigger migration
requests, while S-App clients send an allocation request to
the new closest 𝜇DC. Since taxis represent a small subset
of a city’s whole car fleet, we overlay the 23 days worth of
data in the SF cabs dataset to increase the number of simul-
taneously active cars. We model each 𝜇DC’s request arrival
using a Poisson distribution and each client’s connection
duration to a given 𝜇DC using an exponential distribution,
and instrument these distributions with the ranges of client
inter-arrival and connection duration extracted from our
enlarged overlaid dataset, for both C-App and S-App. Table 2
summarizes the microbenchmarks’ parameters.
We use the parameters extracted from SF to model one metro-
politan area’s workload. To conduct larger-scale experiments

Figure 5: Impact of Pipelining on Aggregate Throughput.
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Figure 6: MCF of baseline and enhanced 2PC for constrained
resources at a 𝜇DC and typical S-App and C-App request rates
from the SF Cabs dataset (Table 2). The blow-up shows the
increase inMCF and the 𝜇DC’s remaining available resources
for enhanced 2PC at higher request rates.

with multiple metropolitan areas, we replicate the edge in-
frastructure (using additional Azure Regions), and the above
SF workload to every additional metropolitan area we model.
6.2.2 Evaluation of OneEdge’s Optimizations
We evaluate OneEdge’s optimizations (§5.3.3)—transaction
pipelining and enhanced 2PC—using a single 𝜇DC.
Transaction Pipelining. The windowing mechanism in
the transaction manager (§5.3.3) aims at mitigating the ef-
fect on the throughput of placement requests due to the
WAN round-trip time (RTT) between the controller and the
𝜇DC. The choice of window size is a function of the WAN
RTT. To study the effect of the window size on OneEdge’s
throughput, we construct an experiment consisting of only
C-App requests, where the request generation rate is set to
correspond to the maximum throughput achievable by the
central controller without any queuing delays (i.e., equiva-
lent to having aWAN RTT of zero and no transaction aborts).
Fig. 5 plots the effect of window size on OneEdge’s aggre-
gate throughput (normalized to the maximum throughput
achievable) for different WAN RTT settings. Naturally, the
minimum window size required to maximize throughput
grows as a function of WAN RTT. For example, a WAN RTT
of 40 ms requires a minimum window size of 50 transactions
to reach the maximum throughput. This result highlights
the need to batch multiple placement requests to mitigate
the negative impact of WAN RTT from the controller to the
𝜇DC. Therefore, we have chosen a conservative window size
of 100 for all the remaining microbenchmark experiments.
Enhanced 2PC Protocol. This optimization aims at avoid-
ing unnecessary rollbacks of placement requests due to state
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mismatch between the central controller and a 𝜇DC (§5.3.3)
by performing state reconciliation. To evaluate the tech-
nique’s effectiveness, we use the metricmean conflict fraction
(MCF), defined as the average number of conflicts per success-
ful transaction. A score of zero represents no conflict, while
a non-zero value indicates the number of aborts that happen
for each successful transaction. For this evaluation we use
a mix of C-App and S-App requests and disable deflection to
deterministically control which requests are handled at the
central controller as opposed to locally at the 𝜇DC.
In this evaluation, we focus on scenarios with high 𝜇DC
resource commitment. We therefore use the higher arrival
rate ranges from Table 2: we vary the C-App and S-App re-
quest arrival rates between 4–10 and 15–25 requests per
second, respectively, while keeping the C-App and S-App
client durations fixed at 50 and 200 seconds, respectively.
Fig. 6 shows theMCF for the enhanced 2PC compared against
baseline 2PC over a range of request arrival rates. The MCF
of baseline 2PC is consistently higher than the enhanced 2PC,
which only becomes non-zero at high arrival rates, when the
resource commitment at the 𝜇DC is sufficiently high to cause
transaction failures due to capacity overcommitment. For
example, at an S-App rate of 20 req/s, the 𝜇DC resource com-
mitment is 88–90% of its total capacity and it is only from this
point on that the MCF increases for enhanced 2PC. Fig. 6’s
inset plot is a blow-up of the enhanced 2PC results to show
the increase in MCF with increasing request rates. Even at an
observed capacity of 95% (corresponding to the largest S-App
arrival rate shown in the graph), the MCF for enhanced 2PC
is an order of magnitude lower compared to baseline 2PC. On
realistic deployments with multiple 𝜇DCs, the central con-
troller can further reduce the probability of capacity-caused
conflicts by avoiding scheduling new requests on 𝜇DCs with
resource commitments over a threshold (e.g., 80%).
The higher the MCF, the higher the probability of failure,
hurting the latency of C-App requests because their success-
ful execution requires repeated scheduling attempts across
the WAN. The MCF trends can be used to extrapolate the
probability of a failure for applications deployed across 𝑛
𝜇DCs: the probability of failure is 1 − (1 − 𝑓 )𝑛 , where 𝑓

is the probability of transaction failure on a single 𝜇DC,
which equals𝑀𝐶𝐹/(1 +𝑀𝐶𝐹 ). A higher MCF increases the
likelihood of failure, which means that the enhanced 2PC’s
positive effect is multiplicative in the multi-𝜇DC scenario.
The results from the windowing and enhanced 2PC experi-
ments validate our first hypothesis regarding the effective-
ness of OneEdge’s optimizations in improving performance.
6.2.3 Control PlaneEffect on StandaloneApplications
Next, we quantify the performance advantage of OneEdge
over a centralized control plane. As we noted earlier, the
centralized baseline is similar to KubeEdge [32] in terms of
control plane actions. The metric of interest is latency per

Figure 7: S-App deployment latency: OneEdge vs. Centralized
control plane.

S-App deployment request. The experiment uses a 𝜇DC in
each of the four metropolitan regions (§6.1). Deployment
requests originate from the locales of all four 𝜇DCs, following
the parameters in Table 2. For this experiment, we turn off
deflection to fully control where each request is processed.
Fig. 7 shows the deployment latency of S-App requests from
each of the four metropolitan areas considered in our sce-
nario. We chose scenarios with low load to avoid queue
buildup in the scheduling entity. We categorize the requests
based on their origin 𝜇DC. Centralized incurs higher deploy-
ment latency than OneEdge, and is higher for 𝜇DCs further
away from the central controller. In contrast, OneEdge in-
curs a constant low latency irrespective of the WAN latency
between edge and controller, as it depends only on the con-
tainer’s allocation update latency (25 ms as per Table 2).
These latency results corroborate our second hypothesis re-
garding the advantage of OneEdge over a centralized control
plane in terms of deployment latency for S-App requests.
6.2.4 Latency/Load-balance Trade-off
OneEdge’s deflection mechanism (§5.2) enables the central
controller to load-balance S-App applications across 𝜇DCs
that are equivalent in terms of providing the latency require-
ments of the requesting client. We construct a microbench-
mark to evaluate the trade-off between achieving low latency
for S-App requests and the desired property of resource allo-
cation balance across latency-equivalent 𝜇DCs. The metric
used is allocation imbalance, defined as the difference be-
tween the highest and lowest resource commitments among
the latency-equivalent 𝜇DCs at a given time. Hence, a value
of zero for this metric indicates perfect load balance.
We evaluate a setting of 8 𝜇DCs in the same metropolitan
area, with all of them equally capable of meeting the latency
requirements of all the emulated client requests emanating
from that region. We calculate the allocation imbalance met-
ric for this set of 𝜇DCs. When the central controller receives
a deflected request, its placement algorithm selects the 𝜇DC
with the lowest resource commitment towards a more evenly
balanced load. The workload consists of only S-App requests
which are skewed such that if all the requests are handled
locally (i.e., no deflection), 50% of the 𝜇DCs in each cell would
have 80% of their resources committed, while the remaining
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(a) Allocation imbalance. (b) Deployment latency.

Figure 8: Trade-off between allocation imbalance and deploy-
ment latency for S-App requests handling at proximal 𝜇DC
vs. at central controller.
50% of the 𝜇DCs would have 20% of their resources commit-
ted on an average. Thus, this workload without deflection
results in an allocation imbalance of 0.6.
We present results for the 8 𝜇DCs emulated in the West US
Azure region, but similar trends are seen for the other Azure
regions as well. Fig. 8 shows the allocation imbalance when
applying our placement heuristic. The figure shows the trade-
off between deployment latency and allocation imbalance for
different settings of the deflection threshold and deflection
percentage. Increasing the deflection percentage for a given
threshold results in better allocation balance (Fig. 8a) at the
expense of higher request completion latency (Fig. 8b) and a
larger load on the central controller.
It is noteworthy that for a given deflection percentage, lower-
ing the deflection threshold, which would result in increasing
the number of deflections, does not result in a proportionate
decrease in allocation imbalance. For e.g., with reference to
Fig. 8a, one can see that there is a significant reduction in al-
location imbalance between thresholds of 0.5 and 0.6. On the
other hand, the reduction in allocation imbalance between
0.3 and 0.0 is much smaller. This result is intuitive since 0.5
threshold is close to the average resource commitment for
the evaluated group of 𝜇DCs.
These results support the third hypothesis regarding the use
of deflection for the latency/load-balance trade-off. Further,
they suggest an intuitive policy for setting the deflection
threshold, namely, the average resource commitment across
equivalent 𝜇DCs. Such a simple policy would be easier to
implement than striving for an optimal trade-off, which re-
quires the knowledge of the lifetime of the deployed applica-
tions and may not be readily available.

6.3 End-to-end Evaluation
The microbenchmarks stress-tested the control planes with
no real allocation of edge resources or execution of applica-
tion components. In this subsection, we detail an E2E eval-
uation using the experimental platform and OneEdge’s full
implementation for running mockups of the exemplar situ-
ation awareness applications discussed in §3. The purpose
of the evaluation is to verify our last hypothesis, namely,

OneEdge’s ability to provide both low latency for S-App ap-
plications and meet application SLOs expressed as latency
bounds and spatial affinity (§3.2). Additionally, we study the
effectiveness of the placement algorithm for reducing the
load imbalance across latency-equivalent 𝜇DCs.
6.3.1 Experimental Setup
Applications. For end-to-end evaluations we experimented
with two applications: Drone (based on [12] and [35]) as an
instance of a S-App and View-Fuse (based on [34]) as an
instance of a C-App.
S-App uses a camera input and inertial measurement to deter-
mine the pose and location of the drone, using a Kalman-filter
based algorithm. The drone application’s pipeline comprises
two stages: 1) feature tracking and detection from the iner-
tial measurement unit (IMU) and cameras, and 2) pose state
estimation (update). For our evaluations, we use a dataset
generated using the ROS [25] framework for both the camera
and inertial measurements [14]. To model the mobility of
the drones (each drone is operating independently), we use
the San Francisco cab dataset [24], associating an individ-
ual cab mobility to that of a drone. S-App is run with the
above synthetic dataset and mobility data for a mockup of
the standalone application for our evaluation studies.
C-App fuses the objects detected by multiple vehicles from
their respective fields of view to create sub-regional view
(Fig. 3), which is then sent back to the vehicles in the same ge-
ographical locality to improve collision avoidance decisions.
To create a mock-up of this application for our evaluation
purposes, we first created a dataset using Carla [10]. Specif-
ically, we used 80+ cars plying through the most complex
map available in Carla (called Town3). Carla simulator is
run for 15 minutes and produces a spatio-temporal dataset
consisting of object detections by individual vehicles. This
dataset is then used as the input to C-App for a mock-up of
the coordinated application for our evaluation studies.
Mixed Workload Creation. For the E2E evaluation we
wish to create a mixed workload consisting of both stan-
dalone and coordinated applications exercising the control
plane simultaneously. The maps are different for the two
applications in the above data collection. However, the only
purpose for the map is to assign a spatial location for a client
relative to others in the same application. Therefore, to unify
the two map data, we shrunk the larger map (SF city) so that
its four corners are aligned with the Carla Town3 map. The
implication from the application point of view is that the
drones appear to move slower than in the original dataset.
Control Plane Configurations:We consider 4 configura-
tions: Centralized and OneEdge with three different deflec-
tion thresholds for S-App requests: 0.5, 0.75, and 1.0 (the
deflection percentage is fixed at 100%).
EvaluationMetrics: In addition to the control plane figures
of merit such as deployment latency and spatial alignment,
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Figure 9: Evaluation of E2E situation awareness applications.

we also record SLO violations for all deployed application
components. For S-App, the latency bound is 12 ms for the
first level (feature tracking) and 50 ms for the second level
(update). For C-App, latency bounds are 10 ms for the first
level (sub-region view) and 100 ms for the second level (re-
gion view), similar to prior work [16]. Any perceived latency
exceeding these bounds is considered an SLO violation.
6.3.2 Analysis of Results
Fig. 9a shows the achieved spatial alignment for the C-App
application. The graph depicts a representative window of
time for the C-App’s execution in one metropolitan area.
We partition the metropolitan area into 48 AoIs, calculate
the spatial alignment (as per §3.2) for each AoI, and report
the average spatial alignment achieved. An optimal place-
ment would achieve 100% spatial alignment. We also plot
a Greedy and a Spatially Agnostic placement, as reference
points. Greedy selects the closest 𝜇DC every time a vehicle
requests to connect to the View-Fuse C-App. Greedy is an
idealized approximation of any real greedy implementation:
it is computed offline, and does not account for migration or
deployment latencies. Spatially Agnostic places each request
on any 𝜇DC with available resources, without taking the
client’s location into account. Fig. 9a shows that OneEdge
achieves a better overall spatial alignment than Greedy, with
downward spikes attributed to the latency of migration caus-
ing the achieved spatial alignment to lag behind the ground

truth of the vehicles’ spatial affinity. The huge gap with Spa-
tially Agnostic indicates the significance of spatial affinity
in the control plane’s placement decisions.
For Fig. 9b and Fig. 9c, we fix the clients using the C-App
(vehicles) to 72 and sweep the number of clients using the
S-App (drones). Fig. 9b shows the median deployment latency
for S-App applications. When all deployments are handled
locally—deflection threshold 1 and assuming sufficient 𝜇DC
capacity—OneEdge’s achieved deployment latency is more
than 3× lower than centralized. As more requests are de-
flected, OneEdge’s deployment latency converges with the
centralized control plane’s.
Finally, Fig. 9c shows the median fraction of SLO violations
for the sub-region view application component of the C-
App application under various control plane configurations.
Similarly to Fig. 9b, the violations are presented with a vary-
ing number of active drones. All three OneEdge configura-
tions display similar trends for SLO violation rates as central-
ized, while recording much better deployment latency for
S-App applications. As expected, a higher deflection thresh-
old in OneEdge yields lower S-App deployment latency. More
Drones increase the probability of reaching a site’s deflec-
tion threshold, leading to more deflections and thus higher
latencies for S-App applications.

7 Conclusions and Future Work
OneEdge is an agile control plane for supporting situation
awareness applications on geo-distributed edge infrastruc-
tures. OneEdge’s contributions include its rich feature set
and novel distributed state management that allows concur-
rent scheduling decisions at the edge sites and the central
controller. The system has been evaluated with microbench-
marks and mock-up of situation awareness applications in a
multi-region Azure setup.
Avenues for future work include (a) Control plane federation:
We plan to partition the central controller into multiple such
controllers with overlapping coverage regions, using a co-
ordination mechanism akin to enhanced 2PC. Additionally,
pushing some of the bookkeeping from the central controller
to the edge sites (e.g., deflection management) could further
improve the system’s scalability. (b) Resource scheduler par-
allelization: Currently, the central controller processes re-
quests sequentially; we plan to apply datacenter scheduler
optimizations [26] for parallelizing the central controller.
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