<u>ePulsar</u>

Control Plane for Publish-Subscribe Systems on Geo-Distributed Edge Infrastructure

Harshit Gupta, Tyler Landle, and Dr. Umakishore Ramachandran

Georgia Tech College of Computing School of Computer Science Incorporating network proximity at scale for latency-sensitive broker selection.

Talk Outline

- 1. Background
- 2. Problem and Challenges
- 3. Design Principles of ePulsar
- 4. Architecture
 - a. Network Proximity Estimation
 - b. Distributed Monitoring
- 5. Implementation
- 6. Evaluations
- 7. Conclusion

Emerging distributed applications need publish-subscribe

- Apps with multiple distributed components
 - Massively Multiplayer Online Games (MMOG)
 - UAV Swarm coordination
 - Collaborative Perception for vehicles
- Share sensed data, state-updates

Emerging distributed applications need publish-subscribe

- Apps with multiple distributed components
- Share sensed data, state-updates
- Publish-subscribe model is a suitable abstraction
 - Decouples data *Producers* and *Consumers*
 - Communication through *Topics*

Emerging distributed applications need publish-subscribe

- Apps with multiple distributed components
- Share sensed data, state-updates
- Publish-subscribe model is a suitable abstraction
 - Decouples data *Producers* and *Consumers*
 - Communication through *Topics*
 - Topics hosted by Broker nodes

Low latency requirement

- Communication latency affects functionality
- Stringent latency requirements
 - UAV Swarm coordination: < 40 ms [1]
 - MMOG: < 100ms GS-to-GS [2]

Low latency requirement

- Communication latency affects functionality
- Stringent latency requirements
 - UAV Swarm coordination: < 40 ms [1]
 - MMOG: < 100ms GS-to-GS [2]
- - Offer strong data semantics, but
 - High end-to-end latency due to Wide Area Network

Edge infrastructure

- Edge-Cloud continuum
 - Multiple providers
 - Multi-city geographical coverage
 - Inter-edge network latency

Talk Outline

- 1. Background
- 2. Problem and Challenges
- 3. Design Principles of ePulsar
- 4. Architecture
 - a. Network Proximity Estimation
 - b. Distributed Monitoring
- 5. Implementation
- 6. Evaluations
- 7. Conclusion

Problem: Serving pub-sub latency requirement of apps

Challenges in operating a geo-distributed pub-sub system

• Topology awareness

- Edge network topology is highly heterogeneous
- Latency variation
- Dense geo-distribution

Challenges in operating a geo-distributed pub-sub system

• Topology awareness

- Edge network topology is highly heterogeneous
- Latency variation
- Dense geo-distribution
- Client mobility
 - Publish-subscribe latency violation

Using cloud-based pub-sub systems on the Edge

- E.g., Apache Pulsar, Apache Kafka 🖓 PULSAR 🗞 kafka
- Control-plane designed for datacenter workloads
 - Focus on even workload distribution, not end-to-end latency
 - Don't consider high client-edge communication latencies
- Need to provide latency-awareness to broker selection

Talk Outline

- 1. Background
- 2. Problem and Challenges
- 3. Design Principles of ePulsar
- 4. Architecture
 - a. Network Proximity Estimation
 - b. Distributed Monitoring
- 5. Implementation
- 6. Evaluations
- 7. Conclusion

● Scalable Network Proximity Estimation → communication latency

- Scalable Network Proximity Estimation → communication latency
- Distributed Monitoring → reduce monitoring overhead

- Scalable Network Proximity Estimation communication latency
- Distributed Monitoring reduce monitoring overhead
- Agile Reconfiguration \rightarrow efficiently handling client mobility

• Scalable Network Proximity Estimation — communication latency

- Distributed Monitoring reduce monitoring overhead
- Agile Reconfiguration efficiently handling client mobility

Talk Outline

- 1. Background
- 2. Problem and Challenges
- 3. Design Principles of ePulsar

4. Architecture

- a. Network Proximity Estimation
- b. Distributed Monitoring
- 5. Implementation
- 6. Evaluations
- 7. Conclusion

- Geo-distributed Broker nodes
 - Host Topics
- Producers and Consumers share data through topics

- Geo-distributed Broker nodes
 O Host Topics
- Producers and Consumers share data through topics
- Components of control-plane
 - Metrics Store for storing monitoring data

- Geo-distributed Broker nodes
 Host Topics
- Producers and Consumers share data through topics
- Components of control-plane
 - Metrics Store for storing monitoring data
 - $\circ \quad \begin{array}{l} \textbf{Broker Selection Policy} \\ \text{Latency-aware Topic} \rightarrow \textbf{Broker mapping} \end{array}$

Consumer

Producer

- Geo-distributed Broker nodes
 Host Topics
- Producers and Consumers share data through topics
- Components of control-plane
 - **Metrics Store** for storing monitoring data
 - $\circ \quad \begin{array}{l} \textbf{Broker Selection Policy} \\ \textbf{Latency-aware Topic} \rightarrow \textbf{Broker mapping} \end{array}$
 - Violation Detection Policy

- Geo-distributed Broker nodes
 Host Topics
- Producers and Consumers share data through topics
- Centralized control-plane
 - Metrics Store for storing monitoring data
 - $\circ \quad \begin{array}{l} \textbf{Broker Selection Policy} \\ \text{Latency-aware Topic} \rightarrow \textbf{Broker mapping} \end{array}$
 - Violation Detection Policy
 - \rightarrow Triggers topic migration

- Geo-distributed Broker nodes
 - Host Topics

 Producers and Consumers share data through topics

End-to-end latency estimation is at the core of control-plane policies.

- Broker Selection Policy
 Latency-aware Topic → Broker mapping
- Violation Detection Policy
 - \rightarrow Triggers topic migration

Consumer

Estimating end-to-end publish-subscribe latency

- Network Proximity estimations for communication latency
- Message rate + offline profiling for processing latency
 - Khare et al. (SEC 2018)

Network Proximity Estimation in ePulsar

- Network Coordinates (NC)
 - Arrange nodes in a Euclidean space Ο
 - Euclidean distance b/w nodes equals RTT Ο
- Network Coordinate (NC) Agents
- Decentralized P2P protocol [1]

[1] Dabek, Frank, et al. "Vivaldi: A decentralized network coordinate system." ACM SIGCOMM Computer Communication Review 34.4 (2004): 15-26. [2] Ledlie, Jonathan, Paul Gardner, and Margo I. Seltzer. "Network Coordinates in the Wild." NSDI. Vol. 7. 2007.

[3] Lee, Sanghwan, et al. "On suitability of euclidean embedding for host-based network coordinate systems." IEEE/ACM Transactions on Networking 18.1 (2009): 27-40.

D-dimensional space)
Height (x ₁ , x ₂ ,, x _D) D-dimensional coord Target	linate
Ping-Pong	
NC Agent 1 Measure RTT	
Exchange coordinates	
Update NC ₁ NC_2) - measured_rtt > error	10

• NC Agent deployed with Broker

- NC Agent deployed with Broker
- Handling mobile clients

- NC Agent deployed with Broker
- Handling mobile clients
 - Additional Edge Gateway component
 - Located at gateway of access point
 - Adjust for Client-Edge GW RTT

- Network Coordinate (NC) Agents
 - On Brokers

Consumer

- Network Coordinate (NC) Agents
 - On Brokers
 - On Edge Gateways

- Worst-case communication latency for topic
 - Using network coordinates

- Network Coordinate (NC) Agents
- Worst-case communication latency for topic
- End-to-end Pub-sub latency estimate
 - Violation Detection policy
 - Broker Selection policy

- Need all topics' metrics at Metrics Store
 - High monitoring traffic through WAN Ο

	M S	letrics Store		
\leq	Wide A	rea Networ	·k	>
	Broker n/w coord Top Bro	Topic msg rate Dic		
Producer n/w coord	Producer n/w coord Producer	Consumer n/w coord Consumer	Consumer n/w coord	Consumer n/w coord er

Consumer

Producer

- Need all topics' metrics at Metrics Store
 High monitoring traffic through WAN
- Distributed metric aggregation
 - Independently per topic

	1	Metrics Store					
Wide Area Network							
	Broker	Торі	С				
	n/w coord	msg ra	ate				
	Тс	pic					
	Br	oker					
				Consume	nsumer w coord		
Producer n/w coord	Producer n/w coord Producer	Consumer n/w coord Co	nsumer	Consumer n/w coord			
Produ	ucer	ĺ	Consu	mer	13		

13

Putting it all together

Talk Outline

- 1. Background
- 2. Problem and Challenges
- 3. Design Principles of ePulsar
- 4. Architecture
 - a. Network Proximity Estimation
 - b. Distributed Monitoring
- 5. Implementation
- 6. Evaluations
- 7. Conclusion

Implementation of enhanced control-plane

- Apache Pulsar **PULSAR**
 - Edge-aware Load Manager module
 - Broker Selection Policy
 - Violation Detection Policy
 - Per-topic monitoring and placement \rightarrow no bundling of topics
 - ZooKeeper as Metrics Store (as in vanilla Pulsar)

Implementation of enhanced control-plane

- Apache Pulsar
- Serf as Network Coordinate Agent

Talk Outline

- 1. Background
- 2. Problem and Challenges
- 3. Design Principles of ePulsar
- 4. Architecture
 - a. Network Proximity Estimation
 - b. Distributed Monitoring
- 5. Implementation
- 6. Evaluations
- 7. Conclusion

Hypotheses being evaluated

- 1. Network Coordinates protocol has low error and resource overheads.
- 2. ePulsar's Broker Selection satisfies end-to-end latency constraint.
- 3. ePulsar's Distributed Monitoring reduces monitoring overhead with increasing scale.
- 4. ePulsar is able to dynamically detect and mitigate latency violations.

Hypotheses being evaluated

- 1. Network Coordinates protocol has low error and resource overheads.
- 2. ePulsar's Broker Selection satisfies end-to-end latency constraint.
- 3. ePulsar's Distributed Monitoring reduces monitoring overhead with increasing scale.
- 4. ePulsar is able to dynamically detect and mitigate latency violations.

Evaluation methodology

- Emulated clients and edge topology
 - Containernet (Open vSwitch + Docker)
 - Linux Traffic Control (*tc*) for synthetic latency

Client mobility

Hypotheses being evaluated

- 1. Network Coordinates protocol has low error and resource overheads.
- 2. ePulsar's Broker Selection satisfies end-to-end latency constraint.
- 3. ePulsar's Distributed Monitoring reduces monitoring overhead with increasing scale.
- 4. ePulsar is able to dynamically detect and mitigate latency violations.

Evaluation methodology

- Emulated clients and edge topology
 - Containernet (Open vSwitch + Docker)
 - Linux Traffic Control (*tc*) for synthetic latency
- Client mobility

- Workload
 - UAV Swarm Coordination
 - Massively Multiplayer Online Gaming

Hypotheses being evaluated

- 1. Network Coordinates protocol has low error and resource overheads.
- 2. ePulsar's Broker Selection satisfies end-to-end latency constraint.
- 3. ePulsar's Distributed Monitoring reduces monitoring overhead with increasing scale.
- 4. ePulsar is able to dynamically detect and mitigate latency violations.

Evaluation methodology

- Emulated clients and edge topology
 - Containernet (Open vSwitch + Docker)
 - Linux Traffic Control (*tc*) for synthetic latency

• Client mobility

- Workload
 - UAV Swarm Coordination
 - Massively Multiplayer Online Gaming

Evaluation of network coordinates for measuring proximity

- Low error in RTT estimation < 3.5ms
- Low CPU and memory overhead
 - < 1% CPU util on AMD EPYC 7501
 - < 15 MB memory usage

Evaluation of UAV Swarm scenario

UAV Swarm Coordination application

Dynamic violation detection and topic migration

- 16 drone swarms each with 8 drones
- Random Waypoint mobility model in a city with 8 edge sites

Talk Outline

- 1. Background
- 2. Problem and Challenges
- 3. Design Principles of ePulsar
- 4. Architecture
 - a. Network Proximity Estimation
 - b. Distributed Monitoring
- 5. Implementation
- 6. Evaluations
- 7. Conclusion

Conclusion

- Control-plane architecture for geo-distributed publish-subscribe system
- Ensures end-to-end publish-subscribe latency
- Latency-aware broker selection and topic migration
- Network Proximity Estimation
- Distributed Monitoring

Conclusion

- Control-plane architecture for geo-distributed publish-subscribe system
- Ensures end-to-end publish-subscribe latency
- Latency-aware broker selection and topic migration
- Network Proximity Estimation
- Distributed Monitoring

Check out the paper for

- Optimizations for agile reconfigurations
- Support for persistent topics
- Evaluation of MMOG application scenario

Future Work

- Decentralize publish-subscribe control-plane (Desousis et al. ICDCS 2018)
- Enable other edge-ready platform services
 - Network Proximity Estimation and Distributed Monitoring as independent services

Dedousis, Dimitris, Nikos Zacheilas, and Vana Kalogeraki. "On the fly load balancing to address hot topics in topic-based pub/sub systems." 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2018.

Thank you!

ePulsar

- Control-plane architecture for geo-distributed publish-subscribe system
- Ensures end-to-end publish-subscribe latency
- Latency-aware broker selection and topic migration
- Network Proximity Estimation
- Distributed Monitoring

Harshit Gupta harshitg@gatech.edu

Backup Slides

Limitations of state-of-the-art in geo-distributed pub-subs

- Off-the-shelf Cloud-based pub-subs on the Edge
 - E.g., Apache Pulsar, Apache Kafka
 - Focus on even workload distribution, not end-to-end latency
 - Don't consider high client-edge communication latencies
- Pub-subs designed for the Edge
 - E.g., EMMA [1], MultiPub [2]
 - Active measurements for topology awareness [1]
 - \Rightarrow High monitoring overhead
 - Require latency between each client-broker pair [2]
 - \Rightarrow Scales poorly

Comparing end-to-end publish-subscribe latency of off-the-shelf Apache Pulsar running on the Edge vs. a topology-aware approach.

[1] Rausch, Thomas, Stefan Nastic, and Schahram Dustdar. "Emma: Distributed qos-aware mqtt middleware for edge computing applications." 2018 IEEE International Conference on Cloud Engineering (IC2E). IEEE, 2018.

[2] Gascon-Samson, Julien, Jörg Kienzle, and Bettina Kemme. "Multipub: Latency and cost-aware global-scale cloud publish/subscribe." 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2017.

Distributed Monitoring: monitoring traffic analysis

- ePulsar vs. NoAggr
- ePulsar: Lower monitoring overhead
 - With increasing scale of workload

Broker selection policy with network proximity awareness

- Systems compared
 - Pulsar: No network proximity awareness
 - **NoAggr**: Same as ePulsar (w/o network coord. aggr.)
- Metric: per-topic worst-case publish-subscribe latency
 - Across producer-consumer pairs
- 16 UAV swarms
 - Each with 8 drones
- Drones in a swarm move together
 - Randomized swarm locations

