Practical Analysis Framework for Software-based
Attestation Scheme

Li Li', Hong Hu!, Jun Sun?, Yang Liu®, and Jin Song Dong!

! National University of Singapore
2 Singapore University of Technology and Design
3 Nanyang Technological University

Abstract. An increasing number of "smart" embedded devices are employed in
our living environment nowadays. Unlike traditional computer systems, these de-
vices are often physically accessible to the attackers. It is therefore almost impos-
sible to guarantee that they are un-compromised, i.e., that indeed the devices are
executing the intended software. In such a context, software-based attestation is
deemed as a promising solution to validate their software integrity. It guarantees
that the software running on the embedded devices are un-compromised without
any hardware support. However, designing software-based attestation protocols
are shown to be error-prone. In this work, we develop a framework for design
and analysis of software-based attestation protocols. We first propose a generic
attestation scheme that captures most existing software-based attestation proto-
cols. After formalizing the security criteria for the generic scheme, we apply our
analysis framework to several well-known software-based attestation protocols
and report various potential vulnerabilities. To the best of our knowledge, this is
the first practical analysis framework for software-based attestation protocols.

1 Introduction

"Smart" sensory embedded devices are getting more and more popular nowadays. They
are frequently used for temperature measurement, fire detection, water saving, etc. In
the near future, they are expected to be ubiquitous. However, their wide adoption poses
threats to our safety and privacy as well. Unlike traditional computer systems, these
devices are often physically accessible to the attackers and it is almost impossible to
guarantee that they are un-compromised, i.e., that indeed the devices are executing
the intended software. Effective techniques for verifying and validating the embed-
ded devices against malicious adversary becomes increasingly important and urgent.
Traditional hardware-based attestation [1—4] is cost-ineffective in such a context. Thus,
software-based attestation [5—7], which aims to function without any dedicated security
hardware, is deemed as a promising solution for verifying the integrity of these massive,
inexpensive, and resource constrained devices.

Software-based attestation is based on the challenge-response paradigm between
the trusted verifier and the potentially compromised prover (the embedded device). It
typically works as follows. The verifier first sends a random challenge to the prover and
asks the prover to generate a checksum for its memory state based on the challenge.
Since the prover’s computing and memory resources are designed to be fully utilized

in the attestation, if the memory is tampered by the adversary, the prover needs to take
extra time to compute the correct checksum. We further assume that the verifier knows
the expected memory state of the prover. He thus can compute the same checksum and
compare it with the one received from the prover. By exploiting the fact that the prover
is resource constrained, software-based attestation ensures that the prover can return the
correct response in time only if it is genuine. On the other hand, whenever the prover
fails to reply in time or returns an incorrect checksum, it is highly likely compromised.
The software-based attestation protocol design is challenging and error-prone [8, 9].
Hence, in this work, we propose an analysis framework for software-based attestation
that can be easily adopted in practice. First, our framework provides a parameterized
generic software-based attestation scheme that captures most existing software-based
attestation protocols. The adversary modeled in this work can not only compromise the
prover before the attestation, but also communicate with the compromised prover dur-
ing the attestation. We then formalize the security criteria for the generic scheme based
on the knowledge of network latency (which is important as timing is essential here)
and adversary model. Since the real software-based attestation protocols are instances
of the generic scheme, these criteria thus naturally should be hold in the real protocols
as well. Hence, we apply our analysis framework to three well-known software-based
attestation schemes, i.e., SWATT [5], SCUBA [7] and VIPER [10], and find four poten-
tial vulnerabilities that have not been reported before. As far as we know, this is the first
framework that can give practical analysis to real software-based attestation protocols.

2 Generic Specification for Software-based Attestation

We start with defining a generic software-based attestation scheme which captures most
existing software-based attestation protocols. The idea is that analysis results based
on the generic schema can be extended to concrete protocols readily as we show in
later sections. The generic software-based attestation scheme involves three parties,
i.e., the trusted verifier V, the prover (the embedded device) P and the adversary A.
We denote the genuine prover and the compromised prover as P, and P, respectively.
In this section, we first present the system model, including the system architecture,
the security property and the threat model. Then we propose a generic software-based
attestation scheme between the trusted verifier }V and the genuine prover P, based on
our system.

2.1 System Overview

Software-based attestation is proposed to verify the resource constrained embedded
devices without using any security hardware (e.g., TPMs [11]). Before presenting the
details of the generic attestation scheme, we first describe the system model employed
in this work. The attestation procedure is conducted between a trusted verifier V and a
prover P over the network. We explicitly consider the network round-trip time (RTT).
The architecture of the verifier VV and the prover P considered in this work are
depicted as follows. P consists of a computing processor, several registers and a mem-
ory M. The data memory Mg and the program memory M), are two different memory

space that should be attested in M. Specifically, M, stores the runtime data (e.g., stack
information, data collected from the environment) that are unpredictable to 1, hence
its content cannot be attested directly in the attestation procedure. M, stores the pro-
gram code which is known to V. The attestation routine verif on the prover side is
pre-installed in M, before the attestation starts. In general, the size of M, could be 0
when the attestation for the data memory is not required. Notice that some memory can
be excluded from the attestation in some specific attestation protocols [12,7, 10], and
thus Mgy + M, may not equal to M. Meanwhile, V is a powerful base station who can
simulate the execution of P. When V has the image of both My and M,, in P, V can
compute the memory checksum based on the image.

During the attestation, P’s data memory My will be first overwritten into a state
that is known to V. The attestation then aims at verifying whether P has a genuine state
for both My and M, as V expected. Let State(P) be the memory state of My + M, in
the prover P. When State(P) is known to V, the attestation can be modeled by a game
between the verifier V and the prover P. In the game, V first sends a random challenge
to P, and then P picks a checksum reply based on the challenge. The prover P wins if
the used time is less than some threshold and the checksum is correct, otherwise P loses
the game. We denote the percentage of differences between two memory states .S and S’
as A(S, S”) and the winning probability of P as P, (L, P), where L denotes the system
and its configurations. We define an attestation protocol as correct if P, (L, Py) = 1,
which means that the genuine prover P, can always win. On the other hand, when u
is the least memory proportion that should be modified in the compromised prover P,
to perform a meaningful attack, we define an attestation protocol as (e, u)-secure if
VPe, A(State(P,), State(Py)) > p > 0 = P, (L,P.) < e, which means that any
prover who needs to overwrite at least p percentage of the attested memory has the
winning probability of no more than €. In the attestation, the adversary wins if and only
if he can keep the malicious code in the attested memory after the attestation. However,
software-based attestation does not guarantee that the device is unmodified before the
attestation.

The adversary A’s capability is specified with two phases. Before the attestation
begins, A can use unlimited resources to reprogram the memory in P.. However, A
cannot change the physical hardware and the network infrastructure, so P.’s memory
storage, computing power and network latency are fixed. Once the attestation starts, A
cannot modify P.’s memory content anymore. Nevertheless, .A can communicate with
‘P. over the network and compute with unlimited resources.

Notations. The notations used in this paper are listed as follows. We write X,Y, Z
to denote sets and z,y, z to denote elements in the sets. f(z : X,y : V) = 2z : Z
represents a function f that maps the tuple of two elements x, y to the element z. Let
n be a natural number. X" stands for the concatenation of n elements in X. X x Y
is the Cartesian product of X and Y. Let D be a probabilistic distribution over set
X.z +{ D } X means assigning an element of X to z according to D. [n...m)|
represents the integers from n to m. [n, m] stands for the real numbers from n to m.
maz, ,{f(x,y)} stands for the maximum value of f(z,y) for any = and y. Pr|z]
denotes the probability of x.

Checksum Computation comp(Sa, go, o)
S is the memory state of PP under attestation.
go is the address generator seed.

o is the checksum response seed.

o @- om0

foriin[1...n]do
gi = Gen(gi-1);
a; = Addr(g:);
¢; = Read(Sq,ai);
r; = Chk(ri—1,¢);
end
return r,,;

Addr Addr Addr
Read Read Read

@@@

Chk +@ Chk —~ — Chk ~

Fig. 1: Checksum Computation

2.2 Generic Attestation Scheme

In this section, we propose a generic specification for software-based attestation scheme
that captures most existing software-based attestation protocols. The specification is
described in two parts. First, given a memory state S, = State(P) of both My and M,
we introduce the checksum computation routine that compute the memory checksum as
shown in Figure 1. Then, we illustrate the generic software-based attestation scheme
which first securely erases the data memory My and then attests the whole memory
Mg + M, with the checksum computation routine.

The checksum computation routine comp(S,, go, 7o) aims at computing the unforge-
able checksum for memory state S, based on the initial address generator g¢ and initial
memory checksum 7. It iteratively computes the address generator g;, the memory ad-
dress a;, the memory content ¢; and the checksum response r; fori € [1...n] as shown
in Figure 1. The four functions used in the generic scheme are illustrated as follows. In
the following paper, Iy, l4, [and [, represent lengths of g;, a;, ¢; and 7; respectively.

— Gen(gi—1 : {0,1}9) = g; : {0,1}" computes the generator g; of the memory
addresses in a random manner incrementally.
— Addr(g; : {0,1}") = a; : {0,1}" converts the random generator g; to the mem-

ory address a;.
— Read(S, : {0,1}" x {0,1}",

a; : {0, 1}l“) — ¢ : {0, 1}lc reads the memory

content ¢; located at the address a; in .S,,.

— Chk(ri—y : {0,1}",¢; : {0,1}")

— 1;{0,1}"" updates the last checksum re-

sponse 7;_1 with the memory content ¢; to the new checksum r;.

The generic software-based attestation scheme is shown in Figure 2. The functions
used in the figure are illustrated as follows. rand(z) generates a random bit-string
and stores it into x. fill(M,S) fills the memory M with state S. Geng(o,go) and
Chko(o,10) derive the initial values for the generator and the checksum from the chal-
lenge o and store them into g and 7o respectively. comp(Sq, go, 7o) illustrated pre-
viously computes the checksum for memory state S, with the generator seed gy and

@

Prover Prover

R

e i | s
:V‘)P:Szlii V2 rand(o) 'V oirecord(ty)1 ! P— Vi,
U = : E V.o E i V : record(ts) |

Verifier \ Verifier -/_, _________ (S, |_ _____ H
Ty T] e——— |
M) HE Vs rand(s)) | e | @9 |
|||V, Sy)! i n BN V' : bound(ty; t2) |
My(Sp) | || === ! M(Sp) | | |1V : equal(comp(Sa, go,70),7n) !

i V' : code update . .. E

g g g g Sy 1

Fig. 2: Generic Software-based Attestation Scheme

the response seed 7¢. record(t) records the current time into ¢. bound(t1,t2) checks
whether to — ¢ is smaller than a time bound. equal(x, y) checks if and y are equiva-
lent. I : op means that I conducts the operation op. I; — I3 : m means that /; sends
the message m to Is. The generic software-based attestation scheme proposed in this
work is divided into two phases as shown in Figure 2.

Phase 1. Secure Erasure overwrites the data memory M, with random noise. Initially,
P’s data memory image M/, in V are filled with 0, while A/, in P has the memory
state S consisting of information generated at runtime. At the end of this phase, P
and P’s image in) have the same memory state S, filled with random noise.

1. When V wants to start the attestation, it first overwrites P’s data memory image
M in V to a random state S/, which is generated by the rand(S’) function.

2. V sends S/ to P and asks P to overwrite its My with S7,.

3. P accepts V’s requests and updates his My with S’ In fact, the last step (1.2)
and this step (1.3) can be streamlined. Whenever P receives a value from V, he
writes it into the corresponding data memory location.

4. When M, is filled with S’,, P sends a FIN signal to start the second phase.

Phase 2. Checksum Computation aims at attesting both M and M, in P and discov-
ering memory modification with overwhelming probability. When the first phase is
finished, V' can run the second phase for multiple times consecutively. Upon the
beginning of the second phase, V knows the memory state S, = State(P).

1. V first picks a random challenge o.

2. V sends o to P and asks P to compute the checksum for his memory state
Sa = Sp + 5/. V also records the time ¢; when the request is sent.

3. After P derives the initial address generator gy and the initial checksum re-
sponse 1o from the challenge o, he computes the checksum over the memory
state S, with comp(Sq, go, ro) illustrated in Figure 1.

4. As soon as the checksum computation routine is finished, P sends the check-
sum 7, back to V. V again records the time t» when r,, is received.

5. Once V receives 1, from P, he checks two conditions: (1) whether the check-
sum is received within the timing threshold {bound(t1,t2) = true} and (2)
whether the checksum is correct {equal(comp(Sa,go,70),mn) = true}. If
both of the conditions are satisfied, P is trusted as genuine and) will update
P’s unattested memory. Otherwise, P is deemed as compromised.

Assumptions. In order to guarantee the correctness of the protocol, we make the fol-
lowing assumptions. First, /P either has the attestation procedure verif pre-deployed
in its program memory M, or can download it into a pre-allocated memory space in
M, at runtime before the attestation starts. Second, V knows the exact memory image
of M, in P. My and M, share the same address space. Third, the attestation proce-
dure verif implemented in P is optimal in terms of execution speed. Fourth, S/, and
o are unpredictable to the prover. Fifth, the cryptographic primitives used in the attes-
tation procedure are perfect. This assumption does not reduce the security offered by
our framework to the real applications. We can update the attestation procedure with
the state-of-the-art cryptographic implementations that are unbreakable at the moment.
For instance, when a hash function is needed in the attestation, we use SHA-2 or SHA-3
that are safe for the time being. Sixth, the adversary cannot personate the prover and
communicate with the verifier directly, which means that the verifier is connected to
the prover via a controllable channel during the attestation, e.g., a bus used in [10].
When the adversary can personate the prover, the software-based attestation protocol is
trivially broken because the adversary can answer the challenge for the prover.

3 Security Criteria Formalization

In this section, we introduce several attack scenarios. Based on the attacks, we formalize
the security criteria for the generic attestation scheme. When the compromised prover
‘P. computes the checksum by itself, we need to discuss two cases: (1) the checksum
is computed with the checksum computation routine at runtime, or (2) the checksum is
pre-computed. In the first case, when the memory and the registers are fully utilized as
shown in Section 3.1, we measure the winning probability of P, who trades computa-
tion power for memory space (memory recovering attack) in Section 3.2. In the second
case, we discuss the scenario where P, stores the pre-computed challenge-response
pairs in the its memory (challenge buffering attack) in Section 3.3. On the other hand,
when P, does not compute the checksum by itself, it can ask .4 to compute the check-
sum (proxy attack) as introduced in Section 3.4. When the memory and the registers
are fully attested, since the above three attack methods are orthogonal, the winning
probability of the compromised prover P, (L, P.) then can be calculated by the most
effective attack among them. Some used notations are summarized in Table 1.

Name Explanation Size
Mq(Sq) Data memory M, filled with memory image state Sg Mg unit
M, (Sp) Program memory M, filled with memory image state .S, mp unit
M(S) Overall memory M filled with memory image state .S m unit ¢
0 The challenge sent from V' to P 1, bit

9i Address generators fori € [0...n] lg bit
a; Memory addresses fori € [0...n] lq bit

Ci Memory contents fori € [0. . .n] 1. bit

75 Checksum responses for i € [0. .. n] 1, bit
T T Network RTT between V and P, varies from d;"i" todg ™ |-

Tyvn e Network RTT between A and P, varies from d™" to d7*®

dGens dAddr, ARead s donk |Computation time for Gen, Addr, Read and Chk resp. -

dg The time needed by P, to compute the memory checksum |-

din The timing threshold on the verifier side -

n The number of iterations in a single checksum computation |-

k The number of consecutive checksum computation (Phase 2)|-

U The number of registers used to store the checksum -

Table 1: Notation Summary

“ m may not equal to mq + m, when some memory is left unattested.

3.1 Full Utilization of Memory and Registers

In the checksum computation routine, the memory are accessed in a random manner
which is unpredictable for the prover before the attestation. Whenever the attested mem-
ory is tampered, the malicious prover thus need to take extra time to recover the original
memory. In order to prevent the malicious prover from cheating, every memory address
should be accessible in the checksum computation. Additionally, the registers should be
fully occupied as well. In this section, we formalize several design principles to ensure
fully utilization of the memory and registers in the checksum computation routine.

Choosing Random Function. During the checksum computation, Gen is a random
function from [, bits to [, bits, and Addr converts the [, bit generators to the I, bit
addresses. Thus, we can take the concatenation of Gen and Addr as a random func-
tion from [bits to [, bits. Since all possible addresses should be accessible when the
generators are traversed, proper configuration of the random function in the attestation
scheme becomes non-trivial. We discuss two kinds of randomization functions in this
work, i.e., the hash oracle and the encryption oracle.

The hash oracle receives a bit-string as input and returns a corresponding random
bit-string as output. Since every hash output is computed independently, according to
the coupon collector’s problem, the expected number of independent runs to cover all
possible output values grows as O(t - log(t)) where ¢ is the number of possible output
values. In other words, if the addresses (a;) and the generators (g;) have the same length,
it is very likely that some memory addresses are uncovered. For instance, when the
hash function SHA-2 is used and both of the generator and the memory address have

the same length of 32bit, only 64% of the addresses can be covered on average when
the generators are traversed in our experiments. By enumerating all possible generators
in the preparation phase, the adversary may find sufficient uncovered addresses and
use them to store the malicious code. As a consequence, when hash oracle is used
in the attestation protocols, the number of generators should be much larger than the
number of addresses. By applying the tail estimate to the coupon collector’s problem,
we can calculate the probability lower-bound of covering all addresses under attestation
as1— (mq -+ mp)1—21.9/((md+mp)-log(md+mp)).

On the other hand, the encryption oracle can be used to generate random numbers as
well by revealing the encryption key to the public. Since the encryption oracle is bijec-
tive, all of the memory addresses should be covered in the generator traversal when the
generator length is not less than the address length. As a result, the encryption oracle
becomes very suitable for the random number generation in software-based attestation.
Two heavily used implementations of the encryption oracle in the software-based attes-
tation protocols are the stream cipher RC4 and the T-function [13]. RC4 is chosen as
the PRNG in SWATT [5] because of its extreme efficiency and compact implementa-
tion in the embedded devices. Meanwhile, T-function can produce a single cycle, which
ensures the traversal of generators. Thus, it is employed in ICE scheme proposed in
ICUBA [7]. A widely used T-function is z < x + (22 VV 5) where V is the bitwise or
operator.

Full Address Coverage at Runtime. Even though the addresses can be fully covered
in the generator traversal, the actual address coverage is also related to the number of
addresses generated at the runtime, which is decided by the number n in the check-
sum computation routine (Figure 2) and the repeat time k of the consecutive checksum
computation (Phase 2). According to the coupon collector’s problem, in order to fully
traverse the whole memory space in the attestation procedure, the minimal number of
memory access n - k should satisfy

Prin-k>c-(mqg+mp) - log(mg+mp)] < (mq + mp)lfc. €))

Full Register Occupation. According to several existing works [5, 7, 10], the registers
in P are frequently used to store the checksum results. During every iteration in the
checksum computation, one of them gets updated to a new value. When any register is
unused in the attestation, the malicious prover can exploit it to conduct attacks. Thus,
all the registers should be occupied. Moreover, the registers should be chosen in a ran-
dom order so the malicious prover cannot predict which one is used next. Let the total
number of registers used for storing the checksum be u. According to the coupon col-
lector’s problem, the probability of covering all registers in the checksum computation
is lower-bounded by 1 — ¢/!—"/(wlog(w)

3.2 P, Follow Checksum Computation Routine: Memory Recovering Attack

Given a genuine prover P, with the memory state .S, and a compromised prover P.
with the memory state S, the probability of distinguishing their states with a single
memory access depends on two factors. The first factor is the percentage of the differ-
ences between S, and S, which could be defined as A\(Sy, S.) = Pr[Read(Sy,a) #

Read(S.,a)|a € {0,1}!]. When A(S,, S,) is sufficiently large, we can easily detect
the modifications in the memory. The second factor is related to the memory content
bias in P,. For instance, the program in P, usually contains a large amount of du-
plicated assembly code such as mov, jmp, call, cmp, nop, etc. These assembly code
can be approximated with high probability. As a consequence, the compromised prover
can overwrite the biased memory content into malicious code and recover the original
content using a recovering algorithm C with high probability. Assume the overwriting
algorithm is WV, the minimal overwriting potion is 4, and memory recovering time d¢
is no more than § - d geqq as required, we could calculate the optimal success probability
of the memory recovery as

P,.(S, i, 0) = mazc w{Pr[Read(S,a) = COW(S), a)
|a € {0,1}]| § - dreaq > de A NS, W(S)) > u}

for any recovering algorithm C and overwriting algorithm W. ¢ is the allowed timing
overhead for the recovering algorithm comparing with the Read operation. We will dis-
cuss more about § in Section 3.4. When § > 1, we can always implement the recovering
algorithm C for any S as C(S,a) = Read(S,a), so P, (S, u,6) > 1— p.

Since P, needs to recover the memory content for n times in the checksum compu-
tation routine, he can compute the correct checksum if either the memory is recovered
successfully for every iteration or the computed checksum collides with the correct one.
So overall success probability for P, is P7, (S, 1,)+ (1 —P7 (S, i1,5))-27 7. As can be
seen from the formula, the success probability is lower-bounded by 2. So increasing
n becomes less significant when n becomes larger. As a consequence, we can define a
threshold 7 for the potential probability increase and then give a lower-bound to the n
used in the checksum computation.

. log(n) —log(1 —27"")
lOg(Pm(S, K,y 5))

P (S p,0) - (1=27"") < =)

In this work, we suggest to set 7 = 2~ which is the success probability’s lower-bound.
Additionally, we recommend the attestation protocols to set n as the lower-bound given
in formula (2) for efficiency and conduct the checksum computation phase (Phase 2)
for multiple times to give better security guarantee.

Full Randomization of Data Memory. In the first phase of the generic attestation
scheme, V asks P to overwrite its data memory with S/, filled with noise. The unpre-
dictability of S/, enforces P to erase its data memory completely. A similar design is
taken in [14], but its S’ is generated by P using a PRNG seeded by a challenge sent
from V. As we discussed above, the recovering algorithm can use the PRNG to generate
the memory state with the received challenge at runtime, so P, can trade the computa-
tion time for memory space. As a result, P. can keep the malicious code in its memory,
but still produce a valid checksum. In Section 3.4, we show that the checksum compu-
tation can have overhead to a degree, so this attack is practical. We thus emphasize that
S/, should be fully randomized by V.

3.3 P, Pre-compute Checksum: Challenge Buffering Attack

The attestation scheme is trivially vulnerable to challenge buffering attack that stores the
challenge-response pairs directly in the memory. Upon receiving a particular challenge
from V, P, looks for the corresponding checksum from its memory without computa-
tion. Since S/, and o are received in the attestation procedure, the challenge-response
stored in the memory is the tuple (o, r,) which has the length of [, + [,.. Thus, the
memory can hold m - I./(l, + [,.) records at most. Additionally, we have 2! different
receivable values. When P, cannot find the record, he can choose a random response
from {0, 1}l". As a consequence, the probability of computing the correct response with
challenge buffering attack method for P, can be expressed as follows.

1-b m -,
hereb = ————— 3
ST where Uot1,) -2 3

I[Db(loa lC7 l’l“am(bm) =b+

As can be seen, Py(l,, I, 1., m4, m) is also lower-bounded by 2~ So we make the
similar suggestion for formula (3) as in Section 3.2 that b - (1 — 27!7) < 27%r,

34 P.Forward Checksum Computation to .4: Proxy Attack

As reported in [10], the software-based attestation is particular vulnerable to the proxy
attack, in which the compromised prover P, forwards the challenge to the adversary
A (a base station) and asks A to compute the checksum for it. In order to prevent
the proxy attack, the expected checksum computation time should be no larger than a
time bound, so that 7. does not have time to wait for the response from .A. However,
one assumption should be made that A cannot personate P. and communicate with
directly. Otherwise, the software-based attestation is trivially broken. The assumption
can be hold when V is connected to P, using special channels (e.g., bus, usb) that A
has no direct access to.

Assume the network RTT between V and P, varies from 77" to T17*® and the
honest prover P, can finish the checksum computation with time dy = n - (dgen +
daddr + dRead + donk), the timing threshold dy, on the verifier side thus should be
configured as

dip > dg + Ty “

to ensure the correctness of the attestation protocol defined in Section 2.1. Hence,
the maximum usable time for P, can be defined as d.(T) = dy, — T, where T €
[Ty, Ty is the real network latency between P, and V.

On one hand, P.. could use d.(T') to conduct the proxy attack. If the network RTT
between A and P, varies from 77" and 77", in order to prevent the proxy attack
completely, we need to make sure that d.(7y"") < T3**", which means the proxy
attack cannot be conducted even under the optimal RTT for P,.. Thus, the attestation
time for the genuine prover should be constrained by

dp, < TR™ + T 3)

Parameters SWATT SCUBA VIPER

lo,lg, 1y (bit) 20487, 16, 64| 128, 16, 160 -, 32,832

le, lg (bit) 8,14 8,7 8,13

mq, mp, m (unit)| 1K, 16K, 17K| 0K, 512, 58K 0K, 8K, 4120K
Ty, T - < 22ms, 51ms|1152ns(43.34ms)?, 44.10ms
", Ty - < 22ms, 51ms 1375ns, 1375ns
din,dg -, 1.8s 2.915s, 2.864s 2300ns, 827ns
n,k,u 3.2E+05, 1, 8 |4.0E+04, 1, 10 3,300, 26

Table 2: Settings of Software-based Attestation Protocols Studied in Section 4

“ This value is absent in [5] and assigned by us. The justification is made in Section 4.1.
’ The RTT in the parentheses is the real network latency collected in the experiments of [10].
The RTT in front is the theoretical lower-bound used in [10].

On the other hand, P, could use d.(T") to conduct the memory recovering attack.
So we calculate the § specified in the memory recovery attack as follows.

dGen + daddr +90 - dRead + donk _ d.(T) _dn =T
dGen + daddr + dRead + donk dyg dyg

(6)

Since, § o d;l o< n~1, in order to keep the § small, the checksum computation routine
should use the largest n as possible, when formula (4) and (5) are still satisfied.

4 Case Studies

In this section, we analyze three well-known software-based attestation protocols, i.e.,
SWATT [5], SCUBA [7] and VIPER [10]. Since the generic software-based attestation
scheme is configured with the parameters listed in Table 1, we first extract them from
the real protocols as shown in Table 2. As can be seen, our generic attestation scheme
can capture existing software-based attestation protocols readily. Then, we apply the
security criteria described in Section 3 manually to the extracted parameters to find
security flaws. In the following subsections, we briefly introduce the protocols first, and
then give detailed vulnerabilities and justifications grouped by the topics in bold font.
We mark the topics with " x " if they are reported for the first time in the literature.

4.1 SWATT

SWATT [5] randomly traverses the memory to compute the checksum. Its security
is guaranteed by the side channel on time consumed in the checksum computation.
SWATT does not consider network RTT, so we do not discuss time related properties
for SWATT. In addition, SWATT uses RC4 as the PRNG and takes the challenge as the
seed of the RC4. As the length of the challenge chosen in the SWATT is not mentioned
in [5], we assume that the challenge is long enough to fully randomize the initial state
of RC4, which means [, = 256 - 8 bits.

Unattested Data Memory. The micro-controller in SWATT has 16 KB program mem-
ory and 1K B data memory. Based on the analysis of the generic attestation scheme,
SWATT is insecure because it neither has Secure Erasure Phase to overwrite the data
memory nor uses any additional complement to secure the data memory. In fact, the
authors of SWATT assumed in [5] that non-executable data memory can do no harm to
the security of software-based attestation by mistake. In [9], Castelluccia et al. point out
that the data memory should be verified in SWATT, otherwise the protocol is vulnerable
to the ROP [15, 16] attack. In this work, we suggest to securely erase the data memory
in SWATT by following our generic attestation scheme.

*Too Large Iteration Number for Computing One Checksum. The main loop of
SWATT has only 16 assembly instructions, which takes 23 machine cycles. Inserting
one if statement in the loop will cause additional 13% overhead. As a result, we assume
that the recovering algorithm C only has time to read the memory content as Read does
without doing any extra computation. Hence, the success probability of the memory
recovering of SWATT becomes P, (S, 1,0) = 1 — p, where p is the percentage of
the modified memory. According to the formula (2), after setting n as suggested, we
have n > —64/log(1 — p). When g = 0.001 which left only 16 byte memory for the
adversary, we should set n as 44340, which is much smaller than the iteration number
320000 used in SWATT. In order to increase the difficulty of attacking the attestation
protocol and traverse the memory address in the platform, more rounds of checksum
computation could be conducted. According to formula (1), when p = 0.001, n =
44340 and ¢ = 2 (the same setting in SWATT), we have k > 11. So we should conduct
the checksum computation for 11 times. By using this new configuration, the overall
memory access time is approximately the same as SWATT while security guarantee
becomes dramatically better.

4.2 SCUBA

SCUBA [7] is a software-based attestation protocol that based on Indisputable Code
Execution (ICE). Rather than attesting the whole memory, the ICE offers security guar-
antee by only verifying a small portion of the code. The Read and Chk implemented
in the ICE scheme are different from those given in Section 2.2. However, they can be
generalized into our framework. In SCUBA, Read not only reads the memory content,
but also returns the Program Pointer (PC'), the current address, the current generator,
the loop counter and other registers. The Chk function then computes the checksum
based on all of them. In order to compute the correct checksum for the modified attes-
tation routine, the malicious prover has to simulate the execution for all of them, which
thus lead to large and detectable overhead on the computation time. If the malicious
prover do not change the attested code, the attested code can update the prover’s whole
memory to a genuine state so the malicious code shall be removed from the prover.

*Proxy Attack is Indefensible. In SCUBA, network RTT is explicitly evaluated in the
experiment as summarized in Table 2. The prover in SCUBA communicates with the
verifier over wireless network. Even though the adversary is assumed to be physically
absent during the attestation in SCUBA, this assumption seems to be too strong to be

hold when a wireless network presents. Thus, we give a detailed analysis for the proxy
attack to SCUBA as follows.

According to [7], the maximum network RTT is 51ms in SCUBA. By observing
the experiment results, the minimum network RTT should be no larger than 22ms. As
the adversary and the verifier share the same wireless network, the network latency
for their communication with the prover should be indifferent. So we have 77" =
™ < 22ms and T = T = 51lms. According to formula (4), we have
din, > dg + 1Y% > 51ms. On the other hand, according to formula (5), we have
dy, < T }{”" + T {}”” < 44ms. Hence, we cannot find a valid threshold d;;, from this
network configuration. When the adversary presents in the attestation, the proxy attack
thus cannot be defended by SCUBA without additional assumptions.

Moreover, if the verifier does not communicate with the prover with a secure chan-
nel (e.g., the verifier uses the wireless network to the communicate with the prover in
this case), the adversary can personate the prover and send the checksum to the veri-
fier directly. Since the adversary can compromise the prover, he can obtain the secret
key stored in the prover as well. So encrypting the wireless channel will not work. We
suggest that the verifier should communicate with the prover in an exclusive method,
such as the usb connection, which is also inexpensive. More importantly, the adversary
cannot use this communication method as it is highly controllable.

Security Claim Justification. Our framework can not only be used to find potential vul-
nerabilities, but also give justifications to the security claims made in existing works. In
SCUBA [7], the malicious prover may exploit the network latency to conduct memory
recovering attack without being detected. However, if the timing overhead of the at-
tack is even larger than the largest network latency, the attack then becomes detectable.
According to this, the authors of SCUBA claim that the checksum computation time
adopted in SCUBA can always detect the memory copy attack, which is the most ef-
ficient memory recovering attack method known to the authors, even if the malicious
prover can communicate without network delay.

In this work, we can justify their security claim with our framework. When the
proxy attack is not considered in SCUBA, increasing the checksum computation time
does not introduce vulnerability. According to formula (6), we have d.(T) /dgy = (d¢n, —
T)/dg. The experiment results in [7] show that the memory copy attack is most efficient
attack which introduces 3% overhead to the checksum computation. In order to detect
the memory copy attack, we should ensure that V1" € [T7*", T3], d.(T) /dg < 1.03.
As we assume that the malicious prover can communicate without network delay, we
set Ty as 0. By applying formula (4), we have d, > 1700ms. Since d,; chosen in
SCUBA is indeed larger than 1700ms, the security claim made by the authors is valid.

4.3 VIPER

VIPER [10] is a software-based attestation scheme designed to verify the integrity of
peripherals’ firmware in a typical x86 computer system. They are proposed to defend
all known software-based attacks, including the proxy attack.

*Absence of Random Function. VIPER uses a similar design as ICE scheme, while
its generators are not produced by a PRNG during the checksum computation, which

does not comply to our generic attestation scheme. The authors implement the check-
sum function into 32 code blocks. One register is updated in every code block with the
memory content and the program counter (PC). Both of the code block and the mem-
ory address are chosen based on the current checksum. Thus, the randomness of the
checksum is purely introduced by the PC and the memory content. However, the PC
is incremented in a deterministic way inside each code block and the memory content
usually is biased as illustrated in Section 3.2. As the randomness could be biased, the
adversary can traverse all challenge values and he may find some memory addresses that
are unreachable for the checksum computation routine, as we discussed in Section 3.1.
Hence, the security provided by VIPER is unclear.

*Insufficient Iteration Number. In VIPER, the number of iterations used in the check-
sum computation routine is only 3, which leads to at least 23 unused registers in the
attestation. Vulnerabilities may be introduced as discussed in Section 3.1. Even if the
registers are chosen in a fully randomized manner and the adversary cannot predict
which register will be used beforehand, the malicious prover still has a high probability
to use some registers without being detected. In fact, two or even one register could be
enough for conducting an attack in practice.

5 Related Works

A large amount of software-based attestation protocols have been designed and imple-
mented [17,5,18,6,12,7,19-22, 10, 23]. Specifically, SWATT [5] is a software-based
attestation scheme that uses the response timing of the memory checksum computation
to identify the compromised embedded devices. In order to prevent replay attack, the
prover’s memory is traversed in SWATT in a random manner based on a challenge sent
from the verifier. Rather than attesting the whole memory content, SCUBA [7] only
checks the protocol implemented in the embedded devices and securely updates the
memory content of the embedded devices after the attestation is finished successfully.
It is based on the ICE (Indisputable Code Execution) checksum computation scheme,
which enables the verifier to obtain an indisputable guarantee that the SCUBA protocol
will be executed as untampered in the embedded devices. VIPER [10] is later proposed
to defense against the adversary who can communicate with the embedded devices dur-
ing the attestation. Network latency is consider in VIPER to prevent the proxy attack.
Perito et al. [22] develop a software-based secure code update protocol. It first over-
writes the target device’s whole memory with random noise and then asks the target
device to generate a checksum based on its memory state. The target device could gen-
erate the correct checksum only if it has erased all its memory content, so the malicious
code should also be removed. Besides the attestation protocol designed for resource
constrained devices, Seshadri et al. [12] develop the software-based attestation protocol
named Pioneer for the Intel Pentium IV Xeon Processor with x86 architecture.
However, the software-based attestation protocol design is challenging and error-
prone [8,9]. Hence, it becomes necessary and urgent to develop an analysis frame-
work for the attestation protocol design. Armknecht et al. [24] recently provide a se-
curity framework for the analysis and design of software attestation. In their work,
they assume the cryptographic primitives such as Pseudo-Random Number Generators

(PRNGs) and hash functions might be insecure and give a upper-bound to the advantage
of the malicious prover in the attestation scheme. They mainly consider six factors: (1)
the memory content could be biased; (2) the memory addresses traversed in the check-
sum computation may not be fully randomized; (3) the memory addresses could be
computed without using the default method; (4) the correct checksum could be com-
puted without finishing the checksum computation routine; (5) the checksum could be
generated without using the default checksum computation function; (6) the challenge-
response pairs could be pre-computed and stored in the memory. In this work, we do
not consider factor (2-5) based on two reasons. First, the attestation routine used in the
protocol can be updated at runtime, so we can always update the cryptographic func-
tions to meet the higher security standard and requirement. For instance, since the hash
function like MD5 is insecure nowadays, we can replace it with SHA-2 or SHA-3 to
reclaim security. More importantly, the upper-bounds of the factor (2-5) are very hard
to measure in practice. For example, given a well-known weak hash function like MD5,
it is hard to measure the time-bounded pseudo-randomness, corresponding to factor (2),
defined in [24]. Comparing with [24], we additionally consider observable network la-
tency, stronger threat model, unpredictable data memory, several security criteria and
various attack schemes. More importantly, our framework has been successfully applied
to several existing software-based attestation protocols to find vulnerabilities.

6 Discussions and Future Works

In this work, we present a practical analysis framework for software-based attestation
scheme. We explicitly consider the network latency and the data memory in the sys-
tem. Furthermore, the adversary presented in this work can not only reprogram the
compromised provers before the attestation but also communicate with them during the
attestation. We successfully apply our framework to three well-known software-based
attestation protocols manually. The results show that our framework can practically find
security flaws in their protocol design and give justifications to their security claims.

The deployment environment, including device architecture, network environment,
efficiency requirement, etc. usually complicates the correctness of the software-based
attestation protocols. Specifically, identifying the most effective overwriting and recov-
ering algorithms becomes very hard, which limits the application of our framework. For
future works, we believe that fine-grain measurement for the overwriting and recovering
algorithms in the practical application context is useful. Another future work is investi-
gating the impact of timing requirement when the attestation efficiency is concerned. In
this work, we assume that software-based attestation can take as much time as it needs.
Nevertheless, in reality, we may require the attestation protocols to be finished within a
timing threshold. Hence, the probability of identifying the compromised prover will be
affected, and choosing the right configurations (e.g., the iteration number) then becomes
more challenging.

References

1. W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable bootstrap architecture,”
in S&P. IEEE CS, 1997, pp. 65-71.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

P. England, B. W. Lampson, J. Manferdelli, M. Peinado, and B. Willman, “A trusted open
platform,” IEEE Computer, vol. 36, no. 7, pp. 55-62, 2003.

. R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and implementation of a tcg-based

integrity measurement architecture,” in USENIX Security. USENIX, 2004, pp. 223-238.

. C.Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang, “Remote attestation to dynamic

system properties: Towards providing complete system integrity evidence,” in DSN. 1EEE,
2009, pp. 115-124.

. A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla, “Swatt: Software-based attestation

for embedded devices,” in S&P. IEEE CS, 2004, pp. 272-282.

. M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim, “Remote software-based attestation for

wireless sensors,” in ESAS. Springer, 2005, pp. 27-41.

. A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. K. Khosla, “Scuba: Secure code update

by attestation in sensor networks,” in WiSe. ACM, 2006, pp. 85-94.

. U. Shankar, M. Chew, and J. D. Tygar, “Side effects are not sufficient to authenticate soft-

ware,” in USENIX Security. USENIX, 2004, pp. §9-102.

. C. Castelluccia, A. Francillon, D. Perito, and C. Soriente, “On the difficulty of software-

based attestation of embedded devices,” in CCS. ACM, 2009, pp. 400—409.

. Y. Li, J. M. McCune, and A. Perrig, “Viper: verifying the integrity of peripherals’ firmware,”

in CCS. ACM, 2011, pp. 3-16.

“Trusted Platform Module.” [Online]. Available: http://www.trustedcomputinggroup.org/
developers/trusted_platform_module

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. K. Khosla, “Pioneer: verify-
ing code integrity and enforcing untampered code execution on legacy systems,” in SOSP.
ACM, 2005, pp. 1-16.

A. Klimov and A. Shamir, “New cryptographic primitives based on multiword t-functions,”
in FSE, ser. LNCS, vol. 3017. Springer, 2004, pp. 1-15.

. Y.-G. Choi, J. Kang, and D. Nyang, “Proactive code verification protocol in wireless sensor

network,” in ICCSA, ser. LNCS, vol. 4706. Springer, 2007, pp. 1085-1096.

H. Shacham, “The geometry of innocent flesh on the bone: return-into-libc without function
calls (on the x86),” in CCS. ACM, 2007, pp. 552-561.

E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good instructions go bad:
generalizing return-oriented programming to risc,” in CCS. ACM, 2008, pp. 27-38.

R. Kennell and L. H. Jamieson, “Establishing the genuinity of remote computer systems,” in
USENIX Security. USENIX, 2003, pp. 21-21.

J. T. Giffin, M. Christodorescu, and L. Kruger, “Strengthening software self-checksumming
via self-modifying code,” in ACSAC. IEEE CS, 2005, pp. 23-32.

Y. Yang, X. Wang, S. Zhu, and G. Cao, “Distributed software-based attestation for node
compromise detection in sensor networks,” in SRDS. IEEE CS, 2007, pp. 219-230.

R. W. Gardner, S. Garera, and A. D. Rubin, “Detecting code alteration by creating a tempo-
rary memory bottleneck,” IEEE Trans. Inf. Forensics Security, vol. 4, no. 4, 2009.

T. AbuHmed, N. Nyamaa, and D. Nyang, “Software-based remote code attestation in wire-
less sensor network,” in GLOBECOM. 1EEE, 2009, pp. 1-8.

D. Perito and G. Tsudik, “Secure code update for embedded devices via proofs of secure
erasure,” in ESORICS, ser. LNCS, vol. 6345. Springer, 2010, pp. 643-662.

X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. Butterworth, “New
results for timing-based attestation,” in S&P. IEEE CS, 2012, pp. 239-253.

F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann, “A security framework for the
analysis and design of software attestation,” in CCS. ACM, 2013, pp. 1-12.

